A simplified vine copula-based probabilistic method for quantifying multi-dimensional ecological niches and niche overlap: take a three-dimensional case as an example
{"title":"A simplified vine copula-based probabilistic method for quantifying multi-dimensional ecological niches and niche overlap: take a three-dimensional case as an example","authors":"Qi Zhou, Shaoqian Huang","doi":"10.1007/s10651-024-00622-w","DOIUrl":null,"url":null,"abstract":"<p>For quantifying <i>m</i>-dimensional (<span>\\(m \\ge 3\\)</span>) niche regions and niche overlaps using a copula-based approach, commonly used copulas, including Archimedean and elliptical copula families, are unsatisfactory alternatives in characterizing a complex dependence structure among multiple variables, especially when bi-variate copulas characterizing dependency structures of two-dimensional sub-variables differ. To solve the problem, we improve the copula-based niche space modeling approach using simplified vine copulas, a powerful tool containing various bi-variate dependence structures in one multivariate copula. Using four simulated data sets, we then check the performance of simplified vine copula approximation when the simplifying assumption is invalid. Finally, we apply the improved copula-based approach to quantifying a three-dimensional niche space of a real case of Swanson et al. (Ecology 96(2):318–324, 2015. https://doi.org/10.1890/14-0235.1) and discover that among various simplified vine and other flexible multi-dimensional copulas, non-parametric simplified vine copula approximation performs best in fitting the data set. In the discussion, to analyze differences in calculating niche overlaps caused by using different copulas, we compare non-parametric simplified vine copula approximation with non-parametric and parametric simplified vine copula approximation, elliptical copula, Hierarchical Archimedean copula estimation, and empirical beta copula and give some comments on the results.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"78 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-024-00622-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For quantifying m-dimensional (\(m \ge 3\)) niche regions and niche overlaps using a copula-based approach, commonly used copulas, including Archimedean and elliptical copula families, are unsatisfactory alternatives in characterizing a complex dependence structure among multiple variables, especially when bi-variate copulas characterizing dependency structures of two-dimensional sub-variables differ. To solve the problem, we improve the copula-based niche space modeling approach using simplified vine copulas, a powerful tool containing various bi-variate dependence structures in one multivariate copula. Using four simulated data sets, we then check the performance of simplified vine copula approximation when the simplifying assumption is invalid. Finally, we apply the improved copula-based approach to quantifying a three-dimensional niche space of a real case of Swanson et al. (Ecology 96(2):318–324, 2015. https://doi.org/10.1890/14-0235.1) and discover that among various simplified vine and other flexible multi-dimensional copulas, non-parametric simplified vine copula approximation performs best in fitting the data set. In the discussion, to analyze differences in calculating niche overlaps caused by using different copulas, we compare non-parametric simplified vine copula approximation with non-parametric and parametric simplified vine copula approximation, elliptical copula, Hierarchical Archimedean copula estimation, and empirical beta copula and give some comments on the results.
期刊介绍:
Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues.
Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics.
Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.