Solving morphological analogies: from retrieval to generation

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Esteban Marquer, Miguel Couceiro
{"title":"Solving morphological analogies: from retrieval to generation","authors":"Esteban Marquer, Miguel Couceiro","doi":"10.1007/s10472-024-09945-7","DOIUrl":null,"url":null,"abstract":"<p>Analogical inference is a remarkable capability of human reasoning, and has been used to solve hard reasoning tasks. Analogy based reasoning (AR) has gained increasing interest from the artificial intelligence community and has shown its potential in multiple machine learning tasks such as classification, decision making and recommendation with competitive results. We propose a deep learning (DL) framework to address and tackle two key tasks in AR: analogy detection and solving. The framework is thoroughly tested on the Siganalogies dataset of morphological analogical proportions (APs) between words, and shown to outperform symbolic approaches in many languages. Previous work have explored the behavior of the Analogy Neural Network for classification (ANNc) on analogy detection and of the Analogy Neural Network for retrieval (ANNr) on analogy solving by retrieval, as well as the potential of an autoencoder (AE) for analogy solving by generating the solution word. In this article we summarize these findings and we extend them by combining ANNr and the AE embedding model, and checking the performance of ANNc as an retrieval method. The combination of ANNr and AE outperforms the other approaches in almost all cases, and ANNc as a retrieval method achieves competitive or better performance than 3CosMul. We conclude with general guidelines on using our framework to tackle APs with DL.</p>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"33 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10472-024-09945-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Analogical inference is a remarkable capability of human reasoning, and has been used to solve hard reasoning tasks. Analogy based reasoning (AR) has gained increasing interest from the artificial intelligence community and has shown its potential in multiple machine learning tasks such as classification, decision making and recommendation with competitive results. We propose a deep learning (DL) framework to address and tackle two key tasks in AR: analogy detection and solving. The framework is thoroughly tested on the Siganalogies dataset of morphological analogical proportions (APs) between words, and shown to outperform symbolic approaches in many languages. Previous work have explored the behavior of the Analogy Neural Network for classification (ANNc) on analogy detection and of the Analogy Neural Network for retrieval (ANNr) on analogy solving by retrieval, as well as the potential of an autoencoder (AE) for analogy solving by generating the solution word. In this article we summarize these findings and we extend them by combining ANNr and the AE embedding model, and checking the performance of ANNc as an retrieval method. The combination of ANNr and AE outperforms the other approaches in almost all cases, and ANNc as a retrieval method achieves competitive or better performance than 3CosMul. We conclude with general guidelines on using our framework to tackle APs with DL.

解决形态类比问题:从检索到生成
类比推理是人类推理的一项杰出能力,一直被用于解决困难的推理任务。基于类比的推理(AR)越来越受到人工智能界的关注,并在分类、决策和推荐等多种机器学习任务中显示出其潜力,取得了极具竞争力的成果。我们提出了一个深度学习(DL)框架,以解决类比推理中的两个关键任务:类比检测和求解。该框架在包含词与词之间形态类比比例(AP)的 Siganalogies 数据集上进行了全面测试,结果表明它在许多语言中的表现优于符号方法。之前的工作探索了用于分类的类比神经网络(ANNc)在类比检测方面的行为,用于检索的类比神经网络(ANNr)在通过检索进行类比求解方面的行为,以及自动编码器(AE)通过生成解词进行类比求解的潜力。在本文中,我们总结了这些研究成果,并通过将 ANNr 和 AE 嵌入模型相结合进行扩展,同时检验 ANNc 作为检索方法的性能。在几乎所有情况下,ANNr 和 AE 的组合都优于其他方法,而 ANNc 作为一种检索方法,其性能与 3CosMul 不相上下,甚至更好。最后,我们提出了使用我们的框架处理具有 DL 的 AP 的一般指导原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信