{"title":"RIS-aided Cooperative FD-SWIPT-NOMA Performance Over Nakagami-m Channels","authors":"Wilson de Souza, Taufik Abrão","doi":"10.1007/s10922-024-09838-4","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigate Reconfigurable Intelligent Surface (RIS)-aided Full-Duplex (FD)-Simultaneous Wireless Information Power Transfer (SWIPT)-Cooperative non-Orthogonal Multiple Access (C-NOMA) consisting of two paired devices. The device with better channel conditions (<span>\\(D_1\\)</span>) is designated to act as a FD relay to assist the device with poor channel conditions (<span>\\(D_2\\)</span>). We assume that <span>\\(D_1\\)</span> does not use its own battery energy to cooperate but harvests energy by utilizing SWIPT. A practical non-linear Energy Harvesting (EH) model is considered. We first approximate the harvested power as a Gamma Random Variable (RV) via the Moment Matching (MM) technique. This allows us to derive analytical expressions for Outage Probability (OP) and ergodic rate (ER) that are simple to compute yet accurate for a wide range of system parameters, such as EH coefficients and residual Self-Interference (SI) levels, being extensively validated by numerical simulations. The OP and ER expressions reveal how important it is to mitigate the SI in the FD relay mode since, for reasonable values of residual SI coefficient, its detrimental effect on the system performance, is extremely noticeable. Also, numerical results reveal that increasing the number of RIS elements can benefit the cooperative system much more than the non-cooperative one.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"21 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09838-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate Reconfigurable Intelligent Surface (RIS)-aided Full-Duplex (FD)-Simultaneous Wireless Information Power Transfer (SWIPT)-Cooperative non-Orthogonal Multiple Access (C-NOMA) consisting of two paired devices. The device with better channel conditions (\(D_1\)) is designated to act as a FD relay to assist the device with poor channel conditions (\(D_2\)). We assume that \(D_1\) does not use its own battery energy to cooperate but harvests energy by utilizing SWIPT. A practical non-linear Energy Harvesting (EH) model is considered. We first approximate the harvested power as a Gamma Random Variable (RV) via the Moment Matching (MM) technique. This allows us to derive analytical expressions for Outage Probability (OP) and ergodic rate (ER) that are simple to compute yet accurate for a wide range of system parameters, such as EH coefficients and residual Self-Interference (SI) levels, being extensively validated by numerical simulations. The OP and ER expressions reveal how important it is to mitigate the SI in the FD relay mode since, for reasonable values of residual SI coefficient, its detrimental effect on the system performance, is extremely noticeable. Also, numerical results reveal that increasing the number of RIS elements can benefit the cooperative system much more than the non-cooperative one.
期刊介绍:
Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.