{"title":"Sequent Calculi for First-order $$\\textrm{ST}$$","authors":"Francesco Paoli, Adam Přenosil","doi":"10.1007/s10992-024-09766-3","DOIUrl":null,"url":null,"abstract":"<p>Strict-Tolerant Logic (<span>\\(\\textrm{ST}\\)</span>) underpins naïve theories of truth and vagueness (respectively including a fully disquotational truth predicate and an unrestricted tolerance principle) without jettisoning any classically valid laws. The classical sequent calculus without Cut is sometimes advocated as an appropriate proof-theoretic presentation of <span>\\(\\textrm{ST}\\)</span>. Unfortunately, there is only a partial correspondence between its derivability relation and the relation of local metainferential <span>\\(\\textrm{ST}\\)</span>-validity – these relations coincide only upon the addition of elimination rules and only within the propositional fragment of the calculus, due to the non-invertibility of the quantifier rules. In this paper, we present two calculi for first-order <span>\\(\\textrm{ST}\\)</span> with an eye to recapturing this correspondence in full. The first calculus is close in spirit to the Epsilon calculus. The other calculus includes rules for the discharge of sequent-assumptions; moreover, it is normalisable and admits interpolation.</p>","PeriodicalId":51526,"journal":{"name":"JOURNAL OF PHILOSOPHICAL LOGIC","volume":"66 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF PHILOSOPHICAL LOGIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10992-024-09766-3","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Strict-Tolerant Logic (\(\textrm{ST}\)) underpins naïve theories of truth and vagueness (respectively including a fully disquotational truth predicate and an unrestricted tolerance principle) without jettisoning any classically valid laws. The classical sequent calculus without Cut is sometimes advocated as an appropriate proof-theoretic presentation of \(\textrm{ST}\). Unfortunately, there is only a partial correspondence between its derivability relation and the relation of local metainferential \(\textrm{ST}\)-validity – these relations coincide only upon the addition of elimination rules and only within the propositional fragment of the calculus, due to the non-invertibility of the quantifier rules. In this paper, we present two calculi for first-order \(\textrm{ST}\) with an eye to recapturing this correspondence in full. The first calculus is close in spirit to the Epsilon calculus. The other calculus includes rules for the discharge of sequent-assumptions; moreover, it is normalisable and admits interpolation.
期刊介绍:
The Journal of Philosophical Logic aims to provide a forum for work at the crossroads of philosophy and logic, old and new, with contributions ranging from conceptual to technical. Accordingly, the Journal invites papers in all of the traditional areas of philosophical logic, including but not limited to: various versions of modal, temporal, epistemic, and deontic logic; constructive logics; relevance and other sub-classical logics; many-valued logics; logics of conditionals; quantum logic; decision theory, inductive logic, logics of belief change, and formal epistemology; defeasible and nonmonotonic logics; formal philosophy of language; vagueness; and theories of truth and validity. In addition to publishing papers on philosophical logic in this familiar sense of the term, the Journal also invites papers on extensions of logic to new areas of application, and on the philosophical issues to which these give rise. The Journal places a special emphasis on the applications of philosophical logic in other disciplines, not only in mathematics and the natural sciences but also, for example, in computer science, artificial intelligence, cognitive science, linguistics, jurisprudence, and the social sciences, such as economics, sociology, and political science.