Blow-up of solutions of critical elliptic equations in three dimensions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rupert L. Frank, Tobias König, Hynek Kovařík
{"title":"Blow-up of solutions of critical elliptic equations in three dimensions","authors":"Rupert L. Frank, Tobias König, Hynek Kovařík","doi":"10.2140/apde.2024.17.1633","DOIUrl":null,"url":null,"abstract":"<p>We describe the asymptotic behavior of positive solutions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>u</mi></mrow><mrow><mi>𝜀</mi></mrow></msub></math> of the equation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>−</mo><mi mathvariant=\"normal\">Δ</mi><mi>u</mi>\n<mo>+</mo>\n<mi>a</mi><mi>u</mi>\n<mo>=</mo> <mn>3</mn><msup><mrow><mi>u</mi></mrow><mrow><mn>5</mn><mo>−</mo><mi>𝜀</mi></mrow></msup></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>3</mn></mrow></msup></math> with a homogeneous Dirichlet boundary condition. The function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math> is assumed to be critical in the sense of Hebey and Vaugon, and the functions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>u</mi></mrow><mrow><mi>𝜀</mi></mrow></msub></math> are assumed to be an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption we derive the exact rate of the blow-up and the location of the concentration point, thereby proving a conjecture of Brezis and Peletier (1989). Similar results are also obtained for solutions of the equation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>−</mo><mi mathvariant=\"normal\">Δ</mi><mi>u</mi>\n<mo>+</mo>\n<mo stretchy=\"false\">(</mo><mi>a</mi>\n<mo>+</mo>\n<mi>𝜀</mi><mi>V</mi>\n<mo stretchy=\"false\">)</mo><mi>u</mi>\n<mo>=</mo> <mn>3</mn><msup><mrow><mi>u</mi></mrow><mrow><mn>5</mn></mrow></msup></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the asymptotic behavior of positive solutions u𝜀 of the equation Δu + au = 3u5𝜀 in Ω 3 with a homogeneous Dirichlet boundary condition. The function a is assumed to be critical in the sense of Hebey and Vaugon, and the functions u𝜀 are assumed to be an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption we derive the exact rate of the blow-up and the location of the concentration point, thereby proving a conjecture of Brezis and Peletier (1989). Similar results are also obtained for solutions of the equation Δu + (a + 𝜀V )u = 3u5 in Ω.

三维临界椭圆方程解的膨胀
我们描述了方程 -Δu+au= 3u5-𝜀 在 Ω⊂ℝ3 中的正解 u𝜀 的渐近行为,该方程具有同质 Dirichlet 边界条件。假设函数 a 是 Hebey 和 Vaugon 意义上的临界值,并假设函数 u𝜀 是 Sobolev 不等式的优化序列。在一个自然非退化假设下,我们得出了炸毁的精确速率和集中点的位置,从而证明了 Brezis 和 Peletier(1989 年)的猜想。对于方程 -Δu+(a+𝜀V)u= 3u5 在 Ω 中的解,我们也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信