On the linear convergence rate of Riemannian proximal gradient method

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Woocheol Choi, Changbum Chun, Yoon Mo Jung, Sangwoon Yun
{"title":"On the linear convergence rate of Riemannian proximal gradient method","authors":"Woocheol Choi, Changbum Chun, Yoon Mo Jung, Sangwoon Yun","doi":"10.1007/s11590-024-02129-6","DOIUrl":null,"url":null,"abstract":"<p>Composite optimization problems on Riemannian manifolds arise in applications such as sparse principal component analysis and dictionary learning. Recently, Huang and Wei introduced a Riemannian proximal gradient method (Huang and Wei in MP 194:371–413, 2022) and an inexact Riemannian proximal gradient method (Wen and Ke in COA 85:1–32, 2023), utilizing the retraction mapping to address these challenges. They established the sublinear convergence rate of the Riemannian proximal gradient method under the retraction convexity and a geometric condition on retractions, as well as the local linear convergence rate of the inexact Riemannian proximal gradient method under the Riemannian Kurdyka-Lojasiewicz property. In this paper, we demonstrate the linear convergence rate of the Riemannian proximal gradient method and the linear convergence rate of the proximal gradient method proposed in Chen et al. (SIAM J Opt 30:210–239, 2020) under strong retraction convexity. Additionally, we provide a counterexample that violates the geometric condition on retractions, which is crucial for establishing the sublinear convergence rate of the Riemannian proximal gradient method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02129-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite optimization problems on Riemannian manifolds arise in applications such as sparse principal component analysis and dictionary learning. Recently, Huang and Wei introduced a Riemannian proximal gradient method (Huang and Wei in MP 194:371–413, 2022) and an inexact Riemannian proximal gradient method (Wen and Ke in COA 85:1–32, 2023), utilizing the retraction mapping to address these challenges. They established the sublinear convergence rate of the Riemannian proximal gradient method under the retraction convexity and a geometric condition on retractions, as well as the local linear convergence rate of the inexact Riemannian proximal gradient method under the Riemannian Kurdyka-Lojasiewicz property. In this paper, we demonstrate the linear convergence rate of the Riemannian proximal gradient method and the linear convergence rate of the proximal gradient method proposed in Chen et al. (SIAM J Opt 30:210–239, 2020) under strong retraction convexity. Additionally, we provide a counterexample that violates the geometric condition on retractions, which is crucial for establishing the sublinear convergence rate of the Riemannian proximal gradient method.

Abstract Image

论黎曼近似梯度法的线性收敛速率
黎曼流形上的复合优化问题出现在稀疏主成分分析和字典学习等应用中。最近,Huang 和 Wei 利用回缩映射提出了黎曼近似梯度法(Huang 和 Wei,发表于 MP 194:371-413, 2022)和非精确黎曼近似梯度法(Wen 和 Ke,发表于 COA 85:1-32, 2023)来解决这些难题。他们建立了在回缩凸性和回缩几何条件下的黎曼近似梯度法的亚线性收敛率,以及在黎曼库尔迪卡-洛雅谢维茨性质下的非精确黎曼近似梯度法的局部线性收敛率。在本文中,我们证明了黎曼近似梯度法的线性收敛率,以及 Chen 等人 (SIAM J Opt 30:210-239, 2020) 提出的近似梯度法在强回缩凸性下的线性收敛率。此外,我们还提供了一个违反回缩几何条件的反例,这对建立黎曼近似梯度法的亚线性收敛率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信