{"title":"An accelerated lyapunov function for Polyak’s Heavy-ball on convex quadratics","authors":"Antonio Orvieto","doi":"10.1007/s11590-024-02119-8","DOIUrl":null,"url":null,"abstract":"<p>In 1964, Polyak showed that the Heavy-ball method, the simplest momentum technique, accelerates convergence of strongly-convex problems in the vicinity of the solution. While Nesterov later developed a globally accelerated version, Polyak’s original algorithm remains simpler and more widely used in applications such as deep learning. Despite this popularity, the question of whether Heavy-ball is also globally accelerated or not has not been fully answered yet, and no convincing counterexample has been provided. This is largely due to the difficulty in finding an effective Lyapunov function: indeed, most proofs of Heavy-ball acceleration in the strongly-convex quadratic setting rely on eigenvalue arguments. Our work adopts a different approach: studying momentum through the lens of quadratic invariants of simple harmonic oscillators. By utilizing the modified Hamiltonian of Störmer-Verlet integrators, we are able to construct a Lyapunov function that demonstrates an <span>\\(O(1/k^2)\\)</span> rate for Heavy-ball in the case of convex quadratic problems. Our novel proof technique, though restricted to linear regression, is found to work well empirically also on non-quadratic convex problems, and thus provides insights on the structure of Lyapunov functions to be used in the general convex case. As such, our paper makes a promising first step towards potentially proving the acceleration of Polyak’s momentum method and we hope it inspires further research around this question.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02119-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In 1964, Polyak showed that the Heavy-ball method, the simplest momentum technique, accelerates convergence of strongly-convex problems in the vicinity of the solution. While Nesterov later developed a globally accelerated version, Polyak’s original algorithm remains simpler and more widely used in applications such as deep learning. Despite this popularity, the question of whether Heavy-ball is also globally accelerated or not has not been fully answered yet, and no convincing counterexample has been provided. This is largely due to the difficulty in finding an effective Lyapunov function: indeed, most proofs of Heavy-ball acceleration in the strongly-convex quadratic setting rely on eigenvalue arguments. Our work adopts a different approach: studying momentum through the lens of quadratic invariants of simple harmonic oscillators. By utilizing the modified Hamiltonian of Störmer-Verlet integrators, we are able to construct a Lyapunov function that demonstrates an \(O(1/k^2)\) rate for Heavy-ball in the case of convex quadratic problems. Our novel proof technique, though restricted to linear regression, is found to work well empirically also on non-quadratic convex problems, and thus provides insights on the structure of Lyapunov functions to be used in the general convex case. As such, our paper makes a promising first step towards potentially proving the acceleration of Polyak’s momentum method and we hope it inspires further research around this question.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.