Effect of different sealers on the properties of phosphate conversion coatings on 30CrMnSi alloys

IF 2.3 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Haonan Guo, Chunxia Wang, Hui Liu
{"title":"Effect of different sealers on the properties of phosphate conversion coatings on 30CrMnSi alloys","authors":"Haonan Guo, Chunxia Wang, Hui Liu","doi":"10.1108/acmm-01-2024-2959","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate a chromium-free sealing treatment process to replace the chromate sealing process in response to the environmental hazards caused by chromate in the Phosphate chemical conversion (PCC) coating post-treatment sealing process.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this paper, chromium-free sealing technology was used to post-treat PCC coatings. Scanning electron microscopy was used to investigate the structure of the surface of the PCC coatings after the sealing treatment, and the corrosion resistance, hydrophobicity and bonding were tested using an electrochemical workstation, a copper sulfate spot-drop test, a lacquer bonding test, a contact angle meter and a neutral salt spray test.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Chromium-free closure makes the grain distribution on the surface of the PCC coating more uniform and dense, and forms an organic film on the surface of the coating, which significantly improves the corrosion resistance and hydrophobicity of the PCC coating, does not affect the coating film bonding force and has similar performance with potassium dichromate solution.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The results show that the corrosion resistance of PCC coatings after chromium-free sealing treatment is improved, and chromium-free sealing has the potential to replace chromium sealing.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-01-2024-2959","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to investigate a chromium-free sealing treatment process to replace the chromate sealing process in response to the environmental hazards caused by chromate in the Phosphate chemical conversion (PCC) coating post-treatment sealing process.

Design/methodology/approach

In this paper, chromium-free sealing technology was used to post-treat PCC coatings. Scanning electron microscopy was used to investigate the structure of the surface of the PCC coatings after the sealing treatment, and the corrosion resistance, hydrophobicity and bonding were tested using an electrochemical workstation, a copper sulfate spot-drop test, a lacquer bonding test, a contact angle meter and a neutral salt spray test.

Findings

Chromium-free closure makes the grain distribution on the surface of the PCC coating more uniform and dense, and forms an organic film on the surface of the coating, which significantly improves the corrosion resistance and hydrophobicity of the PCC coating, does not affect the coating film bonding force and has similar performance with potassium dichromate solution.

Originality/value

The results show that the corrosion resistance of PCC coatings after chromium-free sealing treatment is improved, and chromium-free sealing has the potential to replace chromium sealing.

不同封闭剂对 30CrMnSi 合金磷酸盐转化涂层性能的影响
设计/方法/途径 本文采用无铬封孔技术对 PCC 涂层进行后处理。采用扫描电子显微镜研究了封孔处理后 PCC 涂层表面的结构,并使用电化学工作站、硫酸铜点滴试验、漆膜粘结试验、接触角仪和中性盐雾试验测试了涂层的耐腐蚀性、疏水性和粘结性。结果无铬封闭使 PCC 涂层表面的晶粒分布更加均匀致密,并在涂层表面形成有机膜,显著提高了 PCC 涂层的耐腐蚀性和憎水性,不影响涂膜结合力,与重铬酸钾溶液性能相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anti-corrosion Methods and Materials
Anti-corrosion Methods and Materials 工程技术-冶金工程
CiteScore
2.80
自引率
16.70%
发文量
61
审稿时长
13.5 months
期刊介绍: Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world. Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties. • New methods, materials and software • New developments in research and industry • Stainless steels • Protection of structural steelwork • Industry update, conference news, dates and events • Environmental issues • Health & safety, including EC regulations • Corrosion monitoring and plant health assessment • The latest equipment and processes • Corrosion cost and corrosion risk management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信