{"title":"Stochastic optimization problems with nonlinear dependence on a probability measure via the Wasserstein metric","authors":"Vlasta Kaňková","doi":"10.1007/s10898-024-01380-6","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear dependence on a probability measure has recently been encountered with increasing intensity in stochastic optimization. This type of dependence corresponds to many situations in applications; it can appear in problems static (one-stage), dynamic with finite (multi-stage) or infinite horizon, and single- and multi-objective ones. Moreover, the nonlinear dependence can appear not only in the objective functions but also in the constraint sets. In this paper, we will consider static one-objective problems in which the nonlinear dependence appears in the objective function and may also appear in the constraint sets. In detail, we consider “deterministic” constraint sets, whose dependence on the probability measure is nonlinear, constraint sets determined by second-order stochastic dominance, and sets given by mean-risk problems. The last mentioned instance means that the constraint set corresponds to solutions which guarantee acceptable values of both criteria. To obtain relevant assertions, we employ the stability results given by the Wasserstein metric, based on the <span>\\( {{\\mathcal {L}}}_{1} \\)</span> norm. We mainly focus on the case in which a solution has to be obtained on the basis of the data and of investigating a relationship between the original problem and its empirical version.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01380-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear dependence on a probability measure has recently been encountered with increasing intensity in stochastic optimization. This type of dependence corresponds to many situations in applications; it can appear in problems static (one-stage), dynamic with finite (multi-stage) or infinite horizon, and single- and multi-objective ones. Moreover, the nonlinear dependence can appear not only in the objective functions but also in the constraint sets. In this paper, we will consider static one-objective problems in which the nonlinear dependence appears in the objective function and may also appear in the constraint sets. In detail, we consider “deterministic” constraint sets, whose dependence on the probability measure is nonlinear, constraint sets determined by second-order stochastic dominance, and sets given by mean-risk problems. The last mentioned instance means that the constraint set corresponds to solutions which guarantee acceptable values of both criteria. To obtain relevant assertions, we employ the stability results given by the Wasserstein metric, based on the \( {{\mathcal {L}}}_{1} \) norm. We mainly focus on the case in which a solution has to be obtained on the basis of the data and of investigating a relationship between the original problem and its empirical version.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.