Experimental verification of the optimal fingerprint method for detecting climate change

Jinbo Hu, Hong Yuan, Letian Chen, Nan Zhao, C. P. Sun
{"title":"Experimental verification of the optimal fingerprint method for detecting climate change","authors":"Jinbo Hu, Hong Yuan, Letian Chen, Nan Zhao, C. P. Sun","doi":"arxiv-2406.11879","DOIUrl":null,"url":null,"abstract":"The optimal fingerprint method serves as a potent approach for detecting and\nattributing climate change. However, its experimental validation encounters\nchallenges due to the intricate nature of climate systems. Here, we\nexperimentally examine the optimal fingerprint method simulated by a precisely\ncontrolled magnetic resonance system of spins. The spin dynamic under an\napplied deterministic driving field and a noise field is utilized to emulate\nthe complex climate system with external forcing and internal variability. Our\nexperimental results affirm the theoretical prediction regarding the existence\nof an optimal detection direction which maximizes the signal-to-noise ratio,\nthereby validating the optimal fingerprint method. This work offers direct\nempirical verification of the optimal fingerprint method, crucial for\ncomprehending climate change and its societal impacts.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal fingerprint method serves as a potent approach for detecting and attributing climate change. However, its experimental validation encounters challenges due to the intricate nature of climate systems. Here, we experimentally examine the optimal fingerprint method simulated by a precisely controlled magnetic resonance system of spins. The spin dynamic under an applied deterministic driving field and a noise field is utilized to emulate the complex climate system with external forcing and internal variability. Our experimental results affirm the theoretical prediction regarding the existence of an optimal detection direction which maximizes the signal-to-noise ratio, thereby validating the optimal fingerprint method. This work offers direct empirical verification of the optimal fingerprint method, crucial for comprehending climate change and its societal impacts.
检测气候变化的最佳指纹法的实验验证
最佳指纹法是检测和归因气候变化的有效方法。然而,由于气候系统的复杂性,其实验验证遇到了挑战。在这里,我们通过一个精确控制的自旋磁共振系统模拟了最优指纹法。利用确定性驱动场和噪声场应用下的自旋动态来模拟具有外部强迫和内部变异性的复杂气候系统。实验结果证实了关于存在最佳探测方向的理论预测,该方向可使信噪比最大化,从而验证了最佳指纹识别方法。这项工作为最佳指纹法提供了直接的经验验证,对于理解气候变化及其社会影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信