Fisher's Mirage: Noise Tightening of Cosmological Constraints in Simulation-Based Inference

Christopher Wilson, Rachel bean
{"title":"Fisher's Mirage: Noise Tightening of Cosmological Constraints in Simulation-Based Inference","authors":"Christopher Wilson, Rachel bean","doi":"arxiv-2406.06067","DOIUrl":null,"url":null,"abstract":"We systematically analyze the implications of statistical noise within\nnumerical derivatives on simulation-based Fisher forecasts for large scale\nstructure surveys. Noisy numerical derivatives resulting from a finite number\nof simulations, $N_{sims}$, act to bias the associated Fisher forecast such\nthat the resulting marginalized constraints can be significantly tighter than\nthe noise-free limit. We show the source of this effect can be traced to the\ninfluence of the noise on the marginalization process. Parameters such as the\nneutrino mass, $\\M$, for which higher-order forward differentiation schemes are\ncommonly used, are more prone to noise; the predicted constraints can be akin\nto those purely from a random instance of statistical noise even using\n$(1\\mathrm{Gpc}/h)^{3}$ simulations with $N_{sims}=500$ realizations. We\ndemonstrate how derivative noise can artificially reduce parameter degeneracies\nand seemingly null the effects of adding nuisance parameters to the forecast,\nsuch as HOD fitting parameters. We mathematically characterize these effects\nthrough a full statistical analysis, and demonstrate how confidence intervals\nfor the true noise-free, $N_{sims} \\rightarrow \\infty$, Fisher constraints can\nbe recovered even when noise comprises a consequential component of the\nmeasured signal. The findings and approaches developed here are important for\nensuring simulation-based analyses can be accurately used to assess upcoming\nsurvey capabilities.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We systematically analyze the implications of statistical noise within numerical derivatives on simulation-based Fisher forecasts for large scale structure surveys. Noisy numerical derivatives resulting from a finite number of simulations, $N_{sims}$, act to bias the associated Fisher forecast such that the resulting marginalized constraints can be significantly tighter than the noise-free limit. We show the source of this effect can be traced to the influence of the noise on the marginalization process. Parameters such as the neutrino mass, $\M$, for which higher-order forward differentiation schemes are commonly used, are more prone to noise; the predicted constraints can be akin to those purely from a random instance of statistical noise even using $(1\mathrm{Gpc}/h)^{3}$ simulations with $N_{sims}=500$ realizations. We demonstrate how derivative noise can artificially reduce parameter degeneracies and seemingly null the effects of adding nuisance parameters to the forecast, such as HOD fitting parameters. We mathematically characterize these effects through a full statistical analysis, and demonstrate how confidence intervals for the true noise-free, $N_{sims} \rightarrow \infty$, Fisher constraints can be recovered even when noise comprises a consequential component of the measured signal. The findings and approaches developed here are important for ensuring simulation-based analyses can be accurately used to assess upcoming survey capabilities.
费雪的幻影:基于模拟推断的宇宙学约束的噪声紧缩
我们系统地分析了数值导数中的统计噪声对基于模拟的大型结构勘测费雪预测的影响。由有限次模拟($N_{sims}$)产生的噪声数值导数会使相关的费雪预测产生偏差,从而导致边际化约束比无噪声极限要严格得多。我们表明,这种效应的根源可以追溯到噪声对边际化过程的影响。诸如中微子质量($\M$)这样的参数更容易受到噪声的影响;即使使用$(1\mathrm{Gpc}/h)^{3}$模拟,并使用$N_{sims}=500$实现,预测的约束条件也可能类似于那些纯粹来自统计噪声随机实例的约束条件。我们展示了导数噪声是如何人为地降低参数退化性,并使在预测中添加干扰参数(如 HOD 拟合参数)的效果看似无效的。我们通过全面的统计分析从数学上描述了这些影响,并证明了真正无噪声的 $N_{sims} 的置信区间是如何形成的。\rightarrow \infty$,费舍尔约束条件的置信区间是如何恢复的,即使噪声在测量信号中占了很大一部分。这些发现和方法对于确保基于模拟的分析能够准确地用于评估未来的勘测能力非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信