Machine Learning Models for Accurately Predicting Properties of CsPbCl3 Perovskite Quantum Dots

Mehmet Sıddık Çadırcı, Musa Çadırcı
{"title":"Machine Learning Models for Accurately Predicting Properties of CsPbCl3 Perovskite Quantum Dots","authors":"Mehmet Sıddık Çadırcı, Musa Çadırcı","doi":"arxiv-2406.15515","DOIUrl":null,"url":null,"abstract":"Perovskite Quantum Dots (PQDs) have a promising future for several\napplications due to their unique properties. This study investigates the\neffectiveness of Machine Learning (ML) in predicting the size, absorbance (1S\nabs) and photoluminescence (PL) properties of $\\mathrm{CsPbCl}_3$ PQDs using\nsynthesizing features as the input dataset. the study employed ML models of\nSupport Vector Regression (SVR), Nearest Neighbour Distance (NND), Random\nForest (RF), Gradient Boosting Machine (GBM), Decision Tree (DT) and Deep\nLearning (DL). Although all models performed highly accurate results, SVR and\nNND demonstrated the best accurate property prediction by achieving excellent\nperformance on the test and training datasets, with high $\\mathrm{R}^2$ and low\nRoot Mean Squared Error (RMSE) and low Mean Absolute Error (MAE) metric values.\nGiven that ML is becoming more superior, its ability to understand the QDs\nfield could prove invaluable to shape the future of nanomaterials designing.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite Quantum Dots (PQDs) have a promising future for several applications due to their unique properties. This study investigates the effectiveness of Machine Learning (ML) in predicting the size, absorbance (1S abs) and photoluminescence (PL) properties of $\mathrm{CsPbCl}_3$ PQDs using synthesizing features as the input dataset. the study employed ML models of Support Vector Regression (SVR), Nearest Neighbour Distance (NND), Random Forest (RF), Gradient Boosting Machine (GBM), Decision Tree (DT) and Deep Learning (DL). Although all models performed highly accurate results, SVR and NND demonstrated the best accurate property prediction by achieving excellent performance on the test and training datasets, with high $\mathrm{R}^2$ and low Root Mean Squared Error (RMSE) and low Mean Absolute Error (MAE) metric values. Given that ML is becoming more superior, its ability to understand the QDs field could prove invaluable to shape the future of nanomaterials designing.
用于准确预测 CsPbCl3 Perovskite 量子点特性的机器学习模型
包光体量子点(PQDs)因其独特的性质,在多种应用中具有广阔的前景。本研究以合成特征作为输入数据集,探讨了机器学习(ML)在预测$\mathrm{CsPbCl}_3$ PQDs的尺寸、吸光度(1Sabs)和光致发光(PL)特性方面的有效性。该研究采用了支持向量回归(SVR)、近邻距离(NND)、随机森林(RF)、梯度提升机(GBM)、决策树(DT)和深度学习(DL)等 ML 模型。尽管所有模型都取得了非常准确的结果,但SVR和NND在测试和训练数据集上取得了优异的性能,具有较高的$\mathrm{R}^2$、较低的根均方误差(RMSE)和较低的平均绝对误差(MAE)指标值,从而展示了最准确的性能预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信