Applying Machine Learning to Elucidate Ultrafast Demagnetization Dynamics in Ni and Ni80Fe20

Hasan Ahmadian Baghbaderani, Byoung-Chul Choi
{"title":"Applying Machine Learning to Elucidate Ultrafast Demagnetization Dynamics in Ni and Ni80Fe20","authors":"Hasan Ahmadian Baghbaderani, Byoung-Chul Choi","doi":"arxiv-2406.09620","DOIUrl":null,"url":null,"abstract":"Understanding the correlation between fast and ultrafast demagnetization\nprocesses is crucial for elucidating the microscopic mechanisms underlying\nultrafast demagnetization, which is pivotal for various applications in\nspintronics. Initial theoretical models attempted to establish this correlation\nbut faced challenges due to the complex interplay of physical phenomena. To\naddress this, we employed a variety of machine learning methods, including\nsupervised learning regression algorithms and symbolic regression, to analyze\nlimited experimental data and derive meaningful mathematical expressions\nbetween demagnetization time and the Gilbert damping factor. The results reveal\nthat polynomial regression and K-nearest neighbors algorithms perform best in\npredicting demagnetization time. Additionally,\nsure-independence-screening-and-sparsifying-operator (SISSO) as a symbolic\nregression method suggested a direct correlation between demagnetization time\nand damping factor for Ni and Ni80Fe20, indicating spin-flip scattering\npredominantly influences the ultrafast demagnetization mechanism. The developed\nmodels demonstrate promising predictive capabilities, validated against\nindependent experimental data. Comparative analysis between different materials\nunderscores the significant impact of material properties on ultrafast\ndemagnetization behavior. This study underscores the potential of machine\nlearning in unraveling complex physical phenomena and offers valuable insights\nfor future research in ultrafast magnetism.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the correlation between fast and ultrafast demagnetization processes is crucial for elucidating the microscopic mechanisms underlying ultrafast demagnetization, which is pivotal for various applications in spintronics. Initial theoretical models attempted to establish this correlation but faced challenges due to the complex interplay of physical phenomena. To address this, we employed a variety of machine learning methods, including supervised learning regression algorithms and symbolic regression, to analyze limited experimental data and derive meaningful mathematical expressions between demagnetization time and the Gilbert damping factor. The results reveal that polynomial regression and K-nearest neighbors algorithms perform best in predicting demagnetization time. Additionally, sure-independence-screening-and-sparsifying-operator (SISSO) as a symbolic regression method suggested a direct correlation between demagnetization time and damping factor for Ni and Ni80Fe20, indicating spin-flip scattering predominantly influences the ultrafast demagnetization mechanism. The developed models demonstrate promising predictive capabilities, validated against independent experimental data. Comparative analysis between different materials underscores the significant impact of material properties on ultrafast demagnetization behavior. This study underscores the potential of machine learning in unraveling complex physical phenomena and offers valuable insights for future research in ultrafast magnetism.
应用机器学习阐明 Ni 和 Ni80Fe20 中的超快去磁动力学
了解快速和超快退磁过程之间的相关性对于阐明超快退磁的微观机制至关重要,而超快退磁对于电子学的各种应用至关重要。最初的理论模型试图建立这种相关性,但由于物理现象之间复杂的相互作用而面临挑战。为了解决这个问题,我们采用了多种机器学习方法,包括监督学习回归算法和符号回归,来分析有限的实验数据,并推导出消磁时间与吉尔伯特阻尼因子之间有意义的数学表达式。结果表明,多项式回归和 K 最近邻算法在预测退磁时间方面表现最佳。此外,作为符号回归方法的确定不依赖性筛选和解析操作器(SISSO)表明,Ni 和 Ni80Fe20 的退磁时间和阻尼因子之间存在直接相关性,这表明自旋翻转散射主要影响超快退磁机制。所开发的模型与独立的实验数据进行了验证,显示出良好的预测能力。不同材料之间的对比分析表明了材料特性对超快退磁行为的重要影响。这项研究强调了机器学习在揭示复杂物理现象方面的潜力,并为未来的超快磁研究提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信