A Sylvester–Gallai-Type Theorem for Complex-Representable Matroids

Pub Date : 2024-06-11 DOI:10.1007/s00454-024-00661-x
Jim Geelen, Matthew E. Kroeker
{"title":"A Sylvester–Gallai-Type Theorem for Complex-Representable Matroids","authors":"Jim Geelen, Matthew E. Kroeker","doi":"10.1007/s00454-024-00661-x","DOIUrl":null,"url":null,"abstract":"<p>The Sylvester–Gallai Theorem states that every rank-3 real-representable matroid has a two-point line. We prove that, for each <span>\\(k\\ge 2\\)</span>, every complex-representable matroid with rank at least <span>\\(4^{k-1}\\)</span> has a rank-<i>k</i> flat with exactly <i>k</i> points. For <span>\\(k=2\\)</span>, this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00661-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Sylvester–Gallai Theorem states that every rank-3 real-representable matroid has a two-point line. We prove that, for each \(k\ge 2\), every complex-representable matroid with rank at least \(4^{k-1}\) has a rank-k flat with exactly k points. For \(k=2\), this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.

分享
查看原文
复杂可表示矩阵的西尔维斯特-加莱类型定理
西尔维斯特-加莱定理(Sylvester-Gallai Theorem)指出,每个秩为 3 的实可表示 matroid 都有一条两点线。我们证明,对于每一个 \(kge 2\), 每一个秩至少为 \(4^{k-1}\) 的复可表示 matroid 都有一个正好有 k 个点的 rank-k 平面。对于 \(k=2\) 来说,这是凯利(Kelly)提出的一个著名结果,我们在证明中使用了这个结果。类似的结果早先由巴拉克、德维尔、维格德森和耶胡达约夫证明,后来由德维尔、萨拉夫和维格德森完善,但我们用更基本的证明得到了更好的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信