{"title":"A Sylvester–Gallai-Type Theorem for Complex-Representable Matroids","authors":"Jim Geelen, Matthew E. Kroeker","doi":"10.1007/s00454-024-00661-x","DOIUrl":null,"url":null,"abstract":"<p>The Sylvester–Gallai Theorem states that every rank-3 real-representable matroid has a two-point line. We prove that, for each <span>\\(k\\ge 2\\)</span>, every complex-representable matroid with rank at least <span>\\(4^{k-1}\\)</span> has a rank-<i>k</i> flat with exactly <i>k</i> points. For <span>\\(k=2\\)</span>, this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00661-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Sylvester–Gallai Theorem states that every rank-3 real-representable matroid has a two-point line. We prove that, for each \(k\ge 2\), every complex-representable matroid with rank at least \(4^{k-1}\) has a rank-k flat with exactly k points. For \(k=2\), this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.