{"title":"Coarse Embeddability of Wasserstein Space and the Space of Persistence Diagrams","authors":"Neil Pritchard, Thomas Weighill","doi":"10.1007/s00454-024-00674-6","DOIUrl":null,"url":null,"abstract":"<p>We prove an equivalence between open questions about the embeddability of the space of persistence diagrams and the space of probability distributions (i.e. Wasserstein space). It is known that for many natural metrics, no coarse embedding of either of these two spaces into Hilbert space exists. Some cases remain open, however. In particular, whether coarse embeddings exist with respect to the <i>p</i>-Wasserstein distance for <span>\\(1\\le p\\le 2\\)</span> remains an open question for the space of persistence diagrams and for Wasserstein space on the plane. In this paper, we show that embeddability for persistence diagrams is equivalent to embeddability for Wasserstein space on <span>\\(\\mathbb {R}^2\\)</span>. When <span>\\(p > 1\\)</span>, Wasserstein space on <span>\\(\\mathbb {R}^2\\)</span> is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00674-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove an equivalence between open questions about the embeddability of the space of persistence diagrams and the space of probability distributions (i.e. Wasserstein space). It is known that for many natural metrics, no coarse embedding of either of these two spaces into Hilbert space exists. Some cases remain open, however. In particular, whether coarse embeddings exist with respect to the p-Wasserstein distance for \(1\le p\le 2\) remains an open question for the space of persistence diagrams and for Wasserstein space on the plane. In this paper, we show that embeddability for persistence diagrams is equivalent to embeddability for Wasserstein space on \(\mathbb {R}^2\). When \(p > 1\), Wasserstein space on \(\mathbb {R}^2\) is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.
我们证明了有关持久图空间和概率分布空间(即瓦瑟斯坦空间)可嵌入性的公开问题之间的等价性。众所周知,对于许多自然度量,这两个空间中的任何一个都不存在对希尔伯特空间的粗嵌入。然而,有些情况仍未解决。特别是,对于持久图空间和平面上的 Wasserstein 空间来说,是否存在关于 \(1\le p\le 2\) 的 p-Wasserstein 距离的粗嵌入仍然是一个悬而未决的问题。在本文中,我们证明了持久图的可嵌入性与(\mathbb {R}^2\ )上的瓦瑟斯坦空间的可嵌入性是等价的。当(p > 1\), Wasserstein space on \(\mathbb {R}^2\) is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.