Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal
{"title":"Bounds for the Regularity Radius of Delone Sets","authors":"Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal","doi":"10.1007/s00454-024-00666-6","DOIUrl":null,"url":null,"abstract":"<p>Delone sets are discrete point sets <i>X</i> in <span>\\({\\mathbb {R}}^d\\)</span> characterized by parameters (<i>r</i>, <i>R</i>), where (usually) 2<i>r</i> is the smallest inter-point distance of <i>X</i>, and <i>R</i> is the radius of a largest “empty ball” that can be inserted into the interstices of <i>X</i>. The regularity radius <span>\\({\\hat{\\rho }}_d\\)</span> is defined as the smallest positive number <span>\\(\\rho \\)</span> such that each Delone set with congruent clusters of radius <span>\\(\\rho \\)</span> is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that <span>\\({\\hat{\\rho }}_{d}={\\textrm{O}(d^2\\log _2 d)}R\\)</span> as <span>\\(d\\rightarrow \\infty \\)</span>, independent of <i>r</i>. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2<i>r</i> and those with full-dimensional sets of <i>d</i>-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that <span>\\({\\hat{\\rho }}_{d}={\\textrm{O}(d\\log _2 d)}R\\)</span> as <span>\\(d\\rightarrow \\infty \\)</span>, independent of <i>r</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00666-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Delone sets are discrete point sets X in \({\mathbb {R}}^d\) characterized by parameters (r, R), where (usually) 2r is the smallest inter-point distance of X, and R is the radius of a largest “empty ball” that can be inserted into the interstices of X. The regularity radius \({\hat{\rho }}_d\) is defined as the smallest positive number \(\rho \) such that each Delone set with congruent clusters of radius \(\rho \) is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that \({\hat{\rho }}_{d}={\textrm{O}(d^2\log _2 d)}R\) as \(d\rightarrow \infty \), independent of r. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2r and those with full-dimensional sets of d-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that \({\hat{\rho }}_{d}={\textrm{O}(d\log _2 d)}R\) as \(d\rightarrow \infty \), independent of r.