Bounds for the Regularity Radius of Delone Sets

Pub Date : 2024-06-22 DOI:10.1007/s00454-024-00666-6
Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal
{"title":"Bounds for the Regularity Radius of Delone Sets","authors":"Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal","doi":"10.1007/s00454-024-00666-6","DOIUrl":null,"url":null,"abstract":"<p>Delone sets are discrete point sets <i>X</i> in <span>\\({\\mathbb {R}}^d\\)</span> characterized by parameters (<i>r</i>, <i>R</i>), where (usually) 2<i>r</i> is the smallest inter-point distance of <i>X</i>, and <i>R</i> is the radius of a largest “empty ball” that can be inserted into the interstices of <i>X</i>. The regularity radius <span>\\({\\hat{\\rho }}_d\\)</span> is defined as the smallest positive number <span>\\(\\rho \\)</span> such that each Delone set with congruent clusters of radius <span>\\(\\rho \\)</span> is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that <span>\\({\\hat{\\rho }}_{d}={\\textrm{O}(d^2\\log _2 d)}R\\)</span> as <span>\\(d\\rightarrow \\infty \\)</span>, independent of <i>r</i>. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2<i>r</i> and those with full-dimensional sets of <i>d</i>-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that <span>\\({\\hat{\\rho }}_{d}={\\textrm{O}(d\\log _2 d)}R\\)</span> as <span>\\(d\\rightarrow \\infty \\)</span>, independent of <i>r</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00666-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Delone sets are discrete point sets X in \({\mathbb {R}}^d\) characterized by parameters (rR), where (usually) 2r is the smallest inter-point distance of X, and R is the radius of a largest “empty ball” that can be inserted into the interstices of X. The regularity radius \({\hat{\rho }}_d\) is defined as the smallest positive number \(\rho \) such that each Delone set with congruent clusters of radius \(\rho \) is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that \({\hat{\rho }}_{d}={\textrm{O}(d^2\log _2 d)}R\) as \(d\rightarrow \infty \), independent of r. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2r and those with full-dimensional sets of d-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that \({\hat{\rho }}_{d}={\textrm{O}(d\log _2 d)}R\) as \(d\rightarrow \infty \), independent of r.

Abstract Image

分享
查看原文
德隆集合正则半径的界限
Delone 集是 \({\mathbb {R}}^d\) 中的离散点集 X,由参数(r, R)表征,其中(通常)2r 是 X 的最小点间距离,R 是可以插入 X 间隙的最大 "空球 "的半径。正则半径({hat\{\rho }}_d\)被定义为最小的正数(\(\rho \)),使得每个具有半径为\(\rho \)的全等簇的德龙集都是一个正则系统,也就是一个晶体群下的点轨道。我们讨论了关于正则半径增长行为的两个猜想。我们的 "弱猜想 "指出当 \(d\rightarrow \infty \)与 r 无关时,\({\hat{\rho }}_{d}={\textrm{O}(d^2\log _2 d)}R\) 与 r 无关。我们还为 "强猜想 "的合理性提供了支持,即 \({hat\{rho }}_{d}={textrm{O}(d\log _2 d)}R\) as \(d\rightarrow \infty \),与 r 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信