Transversals to Colorful Intersecting Convex Sets

Pub Date : 2024-06-27 DOI:10.1007/s00454-024-00669-3
Cuauhtemoc Gomez-Navarro, Edgardo Roldán-Pensado
{"title":"Transversals to Colorful Intersecting Convex Sets","authors":"Cuauhtemoc Gomez-Navarro, Edgardo Roldán-Pensado","doi":"10.1007/s00454-024-00669-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>K</i> be a compact convex set in <span>\\(\\mathbb {R}^{2}\\)</span> and let <span>\\(\\mathcal {F}_{1}, \\mathcal {F}_{2}, \\mathcal {F}_{3}\\)</span> be finite families of translates of <i>K</i> such that <span>\\(A \\cap B \\ne \\emptyset \\)</span> for every <span>\\(A \\in \\mathcal {F}_{i}\\)</span> and <span>\\(B \\in \\mathcal {F}_{j}\\)</span> with <span>\\(i \\ne j\\)</span>. A conjecture by Dol’nikov is that, under these conditions, there is always some <span>\\(j \\in \\{ 1,2,3 \\}\\)</span> such that <span>\\(\\mathcal {F}_{j}\\)</span> can be pierced by 3 points. In this paper we prove a stronger version of this conjecture when <i>K</i> is a body of constant width or when it is close in Banach-Mazur distance to a disk. We also show that the conjecture is true with 8 piercing points instead of 3. Along the way we prove more general statements both in the plane and in higher dimensions. A related result was given by Martínez-Sandoval, Roldán-Pensado and Rubin. They showed that if <span>\\(\\mathcal {F}_{1}, \\dots , \\mathcal {F}_{d}\\)</span> are finite families of convex sets in <span>\\(\\mathbb {R}^{d}\\)</span> such that for every choice of sets <span>\\(C_{1} \\in \\mathcal {F}_{1}, \\dots , C_{d} \\in \\mathcal {F}_{d}\\)</span> the intersection <span>\\(\\bigcap _{i=1}^{d} {C_{i}}\\)</span> is non-empty, then either there exists <span>\\(j \\in \\{ 1,2, \\dots , n \\}\\)</span> such that <span>\\(\\mathcal {F}_j\\)</span> can be pierced by few points or <span>\\(\\bigcup _{i=1}^{n} \\mathcal {F}_{i}\\)</span> can be crossed by few lines. We give optimal values for the number of piercing points and crossing lines needed when <span>\\(d=2\\)</span> and also consider the problem restricted to special families of convex sets.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00669-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a compact convex set in \(\mathbb {R}^{2}\) and let \(\mathcal {F}_{1}, \mathcal {F}_{2}, \mathcal {F}_{3}\) be finite families of translates of K such that \(A \cap B \ne \emptyset \) for every \(A \in \mathcal {F}_{i}\) and \(B \in \mathcal {F}_{j}\) with \(i \ne j\). A conjecture by Dol’nikov is that, under these conditions, there is always some \(j \in \{ 1,2,3 \}\) such that \(\mathcal {F}_{j}\) can be pierced by 3 points. In this paper we prove a stronger version of this conjecture when K is a body of constant width or when it is close in Banach-Mazur distance to a disk. We also show that the conjecture is true with 8 piercing points instead of 3. Along the way we prove more general statements both in the plane and in higher dimensions. A related result was given by Martínez-Sandoval, Roldán-Pensado and Rubin. They showed that if \(\mathcal {F}_{1}, \dots , \mathcal {F}_{d}\) are finite families of convex sets in \(\mathbb {R}^{d}\) such that for every choice of sets \(C_{1} \in \mathcal {F}_{1}, \dots , C_{d} \in \mathcal {F}_{d}\) the intersection \(\bigcap _{i=1}^{d} {C_{i}}\) is non-empty, then either there exists \(j \in \{ 1,2, \dots , n \}\) such that \(\mathcal {F}_j\) can be pierced by few points or \(\bigcup _{i=1}^{n} \mathcal {F}_{i}\) can be crossed by few lines. We give optimal values for the number of piercing points and crossing lines needed when \(d=2\) and also consider the problem restricted to special families of convex sets.

Abstract Image

分享
查看原文
彩色相交凸集的横截面
让 K 是 \(\mathbb {R}^{2}\) 中的一个紧凑凸集,让 \(\mathcal {F}_{1}, \mathcal {F}_{2}. \mathcal {F}_{3}. \mathcal {F}_{4}、\)是K的有限平移族,使得每一个A在{F}_{i}中,而B在{F}_{j}中,都有\(i \ne j\).多尔尼科夫的一个猜想是,在这些条件下,总有一些 \(j \in \{ 1,2,3 \}\)使得 \(\mathcal {F}_{j}\) 可以被 3 个点穿透。在本文中,我们证明了当 K 是一个恒定宽度的体或当它在巴纳赫-马祖尔距离上接近于一个圆盘时,这个猜想的更强版本。我们还证明了该猜想在有 8 个穿刺点而不是 3 个穿刺点时是正确的。马丁内斯-桑多瓦尔(Martínez-Sandoval)、罗尔丹-彭萨多(Roldán-Pensado)和鲁宾(Rubin)给出了一个相关结果。他们证明了,如果 \(\mathcal {F}_{1}, \dots , \mathcal {F}_{d}\) 是 \(\mathbb {R}^{d}\) 中凸集的有限族,那么对于每一个选择集 \(C_{1} \ in \mathcal {F}_{1}, \dots 、C_{d} \in \mathcal {F}_{d}\) 的交集 \(\bigcap _{i=1}^{d} {C_{i}}\) 是非空的,那么要么存在 \(j \in \{ 1,2, \dots 、n}),使得(\mathcal {F}_j\ )可以被很少的点穿透,或者(\bigcup _{i=1}^{n} \mathcal {F}_{i})可以被很少的线穿过。当 \(d=2\) 时,我们给出了所需的穿透点和交叉线数量的最优值,并且还考虑了限制于特殊凸集族的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信