On the relative packing densities of pistachios and pistachio shells

Ruben Zakine, Michael Benzaquen
{"title":"On the relative packing densities of pistachios and pistachio shells","authors":"Ruben Zakine, Michael Benzaquen","doi":"arxiv-2406.18386","DOIUrl":null,"url":null,"abstract":"Given an appetizer bowl full of $N$ pistachios, what is the optimal size of\nthe container -- neither too small, nor too big -- needed for accommodating the\nresulting $2N$ non-edible pistachio shells? Performing a simple experiment we\nfind that, provided the shells are densely packed, such container needs only be\nslightly more than half ($\\approx 0.57$) that of the original pistachio bowl.\nIf loosely packed this number increases to $\\approx 0.73$. Our results are\ndiscussed in light of existing literature on packing ellipsoids and spherical\ncaps.","PeriodicalId":501348,"journal":{"name":"arXiv - PHYS - Popular Physics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Popular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given an appetizer bowl full of $N$ pistachios, what is the optimal size of the container -- neither too small, nor too big -- needed for accommodating the resulting $2N$ non-edible pistachio shells? Performing a simple experiment we find that, provided the shells are densely packed, such container needs only be slightly more than half ($\approx 0.57$) that of the original pistachio bowl. If loosely packed this number increases to $\approx 0.73$. Our results are discussed in light of existing literature on packing ellipsoids and spherical caps.
关于开心果和开心果壳的相对堆积密度
给定一个装满 $N$ 开心果的开胃碗,那么需要多大的容器来容纳所产生的 $N$ 不可食用的开心果壳呢?通过一个简单的实验,我们发现,如果开心果壳挤得很密实,那么这种容器只需要比原来的开心果碗多一半(大约 0.57 美元)就够了。如果挤得很松散,这个数字就会增加到大约 0.73 美元。我们将根据现有的椭圆体和球形盖包装文献来讨论我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信