{"title":"Gravitational waves from first-order phase transition in an electroweakly interacting vector dark matter model","authors":"Tomohiro Abe, Katsuya Hashino","doi":"10.1093/ptep/ptae087","DOIUrl":null,"url":null,"abstract":"We discuss gravitational waves in an electroweakly interacting vector dark matter model. In the model, the electroweak gauge symmetry is extended to SU(2)0 × SU(2)1 × SU(2)2 × U(1)Y and spontaneously broken into SU(2)L × U(1)Y at TeV scale. The model has an exchange symmetry between SU(2)0 and SU(2)2. This symmetry stabilizes some massive vector bosons associated with the spontaneous symmetry breaking described above, and an electrically neutral one is a dark matter candidate. In the previous study, it was found that the gauge couplings of SU(2)0 and SU(2)1 are relatively large to explain the measured value of the dark matter energy density via the freeze-out mechanism. With the large gauge couplings, the gauge bosons potentially have a sizable effect on the scalar potential. In this paper, we focus on the phase transition of SU(2)0 × SU(2)1 × SU(2)2 → SU(2)L. We calculate the effective potential at finite temperature and find that the phase transition is first-order and strong in a wide range of the parameter space. The strong first-order phase transition generates gravitational waves. We calculate the gravitational wave spectrum and find that it is possible to detect the gravitational waves predicted in the model by future space-based gravitational wave interferometers. We explore the regions of the parameter space probed by the gravitational wave detection. We find that the gravitational wave detection can probe the region where the mass of h′, a CP-even scalar in the model, is a few TeV.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae087","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss gravitational waves in an electroweakly interacting vector dark matter model. In the model, the electroweak gauge symmetry is extended to SU(2)0 × SU(2)1 × SU(2)2 × U(1)Y and spontaneously broken into SU(2)L × U(1)Y at TeV scale. The model has an exchange symmetry between SU(2)0 and SU(2)2. This symmetry stabilizes some massive vector bosons associated with the spontaneous symmetry breaking described above, and an electrically neutral one is a dark matter candidate. In the previous study, it was found that the gauge couplings of SU(2)0 and SU(2)1 are relatively large to explain the measured value of the dark matter energy density via the freeze-out mechanism. With the large gauge couplings, the gauge bosons potentially have a sizable effect on the scalar potential. In this paper, we focus on the phase transition of SU(2)0 × SU(2)1 × SU(2)2 → SU(2)L. We calculate the effective potential at finite temperature and find that the phase transition is first-order and strong in a wide range of the parameter space. The strong first-order phase transition generates gravitational waves. We calculate the gravitational wave spectrum and find that it is possible to detect the gravitational waves predicted in the model by future space-based gravitational wave interferometers. We explore the regions of the parameter space probed by the gravitational wave detection. We find that the gravitational wave detection can probe the region where the mass of h′, a CP-even scalar in the model, is a few TeV.