Molecular Ball Joints: Mechanochemical Perturbation of Bullvalene Hardy–Cope Rearrangements in Polymer Networks

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peiguan B. Sun, Meredith N. Pomfret, Matthew J. Elardo, Adhya Suresh, Ángel Rentería-Gómez, Remy F. Lalisse, Sheila Keating, Chuqiao Chen, Shayna L. Hilburg, Progyateg Chakma, Yunze Wu, Rowina C. Bell, Stuart J. Rowan, Osvaldo Gutierrez and Matthew R. Golder*, 
{"title":"Molecular Ball Joints: Mechanochemical Perturbation of Bullvalene Hardy–Cope Rearrangements in Polymer Networks","authors":"Peiguan B. Sun,&nbsp;Meredith N. Pomfret,&nbsp;Matthew J. Elardo,&nbsp;Adhya Suresh,&nbsp;Ángel Rentería-Gómez,&nbsp;Remy F. Lalisse,&nbsp;Sheila Keating,&nbsp;Chuqiao Chen,&nbsp;Shayna L. Hilburg,&nbsp;Progyateg Chakma,&nbsp;Yunze Wu,&nbsp;Rowina C. Bell,&nbsp;Stuart J. Rowan,&nbsp;Osvaldo Gutierrez and Matthew R. Golder*,&nbsp;","doi":"10.1021/jacs.4c04401","DOIUrl":null,"url":null,"abstract":"<p >The solution-state fluxional behavior of bullvalene has fascinated physical organic and supramolecular chemists alike. Little effort, however, has been put into investigating bullvalene applications in bulk, partially due to difficulties in characterizing such dynamic systems. To address this knowledge gap, we herein probe whether bullvalene Hardy–Cope rearrangements can be mechanically perturbed in bulk polymer networks. We use dynamic mechanical analysis to demonstrate that the activation barrier to the glass transition process is significantly elevated for bullvalene-containing materials relative to “static” control networks. Furthermore, bullvalene rearrangements can be mechanically perturbed at low temperatures in the glassy region; such behavior facilitates energy dissipation (i.e., increased hysteresis energy) and polymer chain alignment to stiffen the material (i.e., increased Young’s modulus) under load. Computational simulations corroborate our work that showcases bullvalene as a reversible “low-force” covalent mechanophore in the modulation of viscoelastic behavior.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c04401","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The solution-state fluxional behavior of bullvalene has fascinated physical organic and supramolecular chemists alike. Little effort, however, has been put into investigating bullvalene applications in bulk, partially due to difficulties in characterizing such dynamic systems. To address this knowledge gap, we herein probe whether bullvalene Hardy–Cope rearrangements can be mechanically perturbed in bulk polymer networks. We use dynamic mechanical analysis to demonstrate that the activation barrier to the glass transition process is significantly elevated for bullvalene-containing materials relative to “static” control networks. Furthermore, bullvalene rearrangements can be mechanically perturbed at low temperatures in the glassy region; such behavior facilitates energy dissipation (i.e., increased hysteresis energy) and polymer chain alignment to stiffen the material (i.e., increased Young’s modulus) under load. Computational simulations corroborate our work that showcases bullvalene as a reversible “low-force” covalent mechanophore in the modulation of viscoelastic behavior.

Abstract Image

Abstract Image

分子球关节:聚合物网络中 Bullvalene Hardy-Cope 重排的机械化学扰动。
牛磺戊烯在溶液状态下的通量行为令物理有机化学家和超分子化学家着迷。然而,由于难以表征这种动态系统,人们在研究勃发烯在体液中的应用方面投入的精力很少。为了填补这一知识空白,我们在本文中探讨了在大块聚合物网络中是否可以对缬氨酸哈代-科普重排进行机械扰动。我们利用动态力学分析证明,与 "静态 "对照网络相比,含缬氨酸材料的玻璃化转变过程的活化障碍显著升高。此外,在玻璃区域的低温条件下,牛华烯重排可以受到机械扰动;这种行为有利于能量耗散(即增加滞后能)和聚合物链排列,从而使材料在载荷作用下更加坚硬(即增加杨氏模量)。计算模拟证实了我们的研究成果,即牛磺戊烯是一种可逆的 "低作用力 "共价机械结构体,可调节粘弹性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信