{"title":"Artificial-weathering test requirements for fire-retardant-treated wood to reproduce optimal chemical retention and moisture conditions","authors":"Ryo Takase, Atsuko Ishikawa, Daisuke Kamikawa","doi":"10.1186/s10086-024-02143-3","DOIUrl":null,"url":null,"abstract":"Despite the increasing outdoor use of fire-retardant-treated wood, methods for predicting its service life remain poorly established. With the aim of establishing a method to predict chemical losses from fire-retardant-treated (FRT) wood caused by humid atmospheres and rain outdoors, this study examined the preferable conditions for artificial-weathering tests and demonstrated the acceleration coefficients in these tests (i.e., the ratio of equivalent time to reach the same retention of chemicals in artificial weathering and outdoors) based on the EN927-6 standard. To determine the moisture absorption and desorption levels of FRT exposed to outdoor conditions, an outdoor exposure experiment was conducted. The moisture content was higher in the FRT wood than in untreated wood, regardless of the type of coating, and ranged between 11% (in March) and 50% (in September) of the untreated wood’s weight. EN927-6 artificial weathering tests were performed on two groups of specimens with initial moisture contents of 0% and 25%. Retention rates of fire-retardant chemicals after a 2520-h test were compared with those retrieved from 4-year outdoor exposure reported elsewhere. Comparison of these two experiments demonstrated that the acceleration coefficients were 4.1–11.3 in the case of specimens with 0% initial moisture content and 5.1–11.4 in the case of specimens with 25% initial moisture content. The higher initial moisture content produced a more uniform acceleration coefficient. Nevertheless, larger acceleration coefficients were derived from specimens with penetrating or semi-film-forming coatings in both cases. The relationships between the uniformity of this acceleration coefficient and the initial moisture content are discussed from the moisture absorption experiment under constant temperature and humidity and under condensation conditions.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-024-02143-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the increasing outdoor use of fire-retardant-treated wood, methods for predicting its service life remain poorly established. With the aim of establishing a method to predict chemical losses from fire-retardant-treated (FRT) wood caused by humid atmospheres and rain outdoors, this study examined the preferable conditions for artificial-weathering tests and demonstrated the acceleration coefficients in these tests (i.e., the ratio of equivalent time to reach the same retention of chemicals in artificial weathering and outdoors) based on the EN927-6 standard. To determine the moisture absorption and desorption levels of FRT exposed to outdoor conditions, an outdoor exposure experiment was conducted. The moisture content was higher in the FRT wood than in untreated wood, regardless of the type of coating, and ranged between 11% (in March) and 50% (in September) of the untreated wood’s weight. EN927-6 artificial weathering tests were performed on two groups of specimens with initial moisture contents of 0% and 25%. Retention rates of fire-retardant chemicals after a 2520-h test were compared with those retrieved from 4-year outdoor exposure reported elsewhere. Comparison of these two experiments demonstrated that the acceleration coefficients were 4.1–11.3 in the case of specimens with 0% initial moisture content and 5.1–11.4 in the case of specimens with 25% initial moisture content. The higher initial moisture content produced a more uniform acceleration coefficient. Nevertheless, larger acceleration coefficients were derived from specimens with penetrating or semi-film-forming coatings in both cases. The relationships between the uniformity of this acceleration coefficient and the initial moisture content are discussed from the moisture absorption experiment under constant temperature and humidity and under condensation conditions.
期刊介绍:
The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.