Nonplanar structure accelerates reverse intersystem crossing of TADF emitters: nearly 40% EQE and relieved efficiency roll off†

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
He Liu, Yang Liu, Guohao Chen, Yuan Meng, Hao Peng, Jingsheng Miao and Chuluo Yang
{"title":"Nonplanar structure accelerates reverse intersystem crossing of TADF emitters: nearly 40% EQE and relieved efficiency roll off†","authors":"He Liu, Yang Liu, Guohao Chen, Yuan Meng, Hao Peng, Jingsheng Miao and Chuluo Yang","doi":"10.1039/D4SC03111C","DOIUrl":null,"url":null,"abstract":"<p >Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC (<em>k</em><small><sub>RISC</sub></small>). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96–98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, <strong>S2-TRZ</strong> exhibits an accelerated <em>k</em><small><sub>RISC</sub></small> of 24.2 × 10<small><sup>5</sup></small> s<small><sup>−1</sup></small> compared to the 11.1 × 10<small><sup>5</sup></small> s<small><sup>−1</sup></small> of <strong>S1-TRZ</strong>, which solely incorporates heavy atoms. Additionally, <strong>O1-TRZ</strong> possesses a further lower <em>k</em><small><sub>RISC</sub></small> of 9.42 × 10<small><sup>5</sup></small> s<small><sup>−1</sup></small> because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A<small><sup>−1</sup></small>. More importantly, devices utilizing <strong>S2-TRZ</strong> as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m<small><sup>−2</sup></small>, in contrast to the 12% for <strong>O1-TRZ</strong> and 11% for <strong>S1-TRZ</strong>, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sc/d4sc03111c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sc/d4sc03111c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC (kRISC). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96–98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, S2-TRZ exhibits an accelerated kRISC of 24.2 × 105 s−1 compared to the 11.1 × 105 s−1 of S1-TRZ, which solely incorporates heavy atoms. Additionally, O1-TRZ possesses a further lower kRISC of 9.42 × 105 s−1 because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A−1. More importantly, devices utilizing S2-TRZ as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m−2, in contrast to the 12% for O1-TRZ and 11% for S1-TRZ, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.

Abstract Image

非平面结构加速了 TADF 发射器的反向系统间穿越:EQE 接近 40%,效率衰减得到缓解
探索增强反向系统间交叉(RISC)的策略对于开发高效的热激活延迟荧光(TADF)分子具有重要意义。在本研究中,我们探讨了非平面结构对提高 RISC 速率(kRISC)的实质性影响。为了评估这一假设,我们开发了三种基于螺吖啶供体的发射体。由于供体和受体的刚性,所有分子都表现出 96-98% 的高光致发光量子产率 (PLQY)。利用重元素效应和非平面几何的协同效应,S2-TRZ 的 kRISC 加速到 24.2 × 106 s-1,而仅含有重原子的 S1-TRZ 为 1.11× 106 s-1。此外,由于不存在这些效应,O1-TRZ 的 kRISC 进一步降低到 9.42 × 105 s-1。值得注意的是,由于具有较高的 PLQYs 和适当的 TADF 行为,基于这些发射器的器件表现出了最先进的性能,包括高达 40.1% 的最大外部量子效率和 124.7 cd/A 的最大电流效率。更重要的是,利用 S2-TRZ 作为发射极的器件在 1000 cd m-2 下的效率衰减仅为 7%,而 O1-TRZ 和 S1-TRZ 则分别为 12% 和 11%。这些发现加深了我们对用于高性能电致发光器件的 TADF 过程的基本理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信