{"title":"High-Performance Hardware Acceleration Architecture for Cross-Silo Federated Learning","authors":"Junxue Zhang;Xiaodian Cheng;Liu Yang;Jinbin Hu;Han Tian;Kai Chen","doi":"10.1109/TPDS.2024.3413718","DOIUrl":null,"url":null,"abstract":"Cross-silo federated learning (FL) adopts various cryptographic operations to preserve data privacy, which introduces significant performance overhead. In this paper, we identify nine widely-used cryptographic operations and design an efficient hardware architecture to accelerate them. However, directly offloading them on hardware statically leads to (1) inadequate hardware acceleration due to the limited resources allocated to each operation; (2) insufficient resource utilization, since different operations are used at different times. To address these challenges, we propose FLASH, a high-performance hardware acceleration architecture for cross-silo FL systems. At its heart, FLASH extracts two basic operators—modular exponentiation and multiplication—behind the nine cryptographic operations and implements them as highly-performant engines to achieve adequate acceleration. Furthermore, it leverages a dataflow scheduling scheme to dynamically compose different cryptographic operations based on these basic engines to obtain sufficient resource utilization. We have implemented a fully-functional FLASH prototype with Xilinx VU13P FPGA and integrated it with FATE, the most widely-adopted cross-silo FL framework. Experimental results show that, for the nine cryptographic operations, FLASH achieves up to \n<inline-formula><tex-math>$14.0\\times$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$3.4\\times$</tex-math></inline-formula>\n acceleration over CPU and GPU, translating to up to \n<inline-formula><tex-math>$6.8\\times$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$2.0\\times$</tex-math></inline-formula>\n speedup for realistic FL applications, respectively. We finally evaluate the FLASH design as an ASIC, and it achieves \n<inline-formula><tex-math>$23.6\\times$</tex-math></inline-formula>\n performance improvement upon the FPGA prototype.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 8","pages":"1506-1523"},"PeriodicalIF":5.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10556815/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-silo federated learning (FL) adopts various cryptographic operations to preserve data privacy, which introduces significant performance overhead. In this paper, we identify nine widely-used cryptographic operations and design an efficient hardware architecture to accelerate them. However, directly offloading them on hardware statically leads to (1) inadequate hardware acceleration due to the limited resources allocated to each operation; (2) insufficient resource utilization, since different operations are used at different times. To address these challenges, we propose FLASH, a high-performance hardware acceleration architecture for cross-silo FL systems. At its heart, FLASH extracts two basic operators—modular exponentiation and multiplication—behind the nine cryptographic operations and implements them as highly-performant engines to achieve adequate acceleration. Furthermore, it leverages a dataflow scheduling scheme to dynamically compose different cryptographic operations based on these basic engines to obtain sufficient resource utilization. We have implemented a fully-functional FLASH prototype with Xilinx VU13P FPGA and integrated it with FATE, the most widely-adopted cross-silo FL framework. Experimental results show that, for the nine cryptographic operations, FLASH achieves up to
$14.0\times$
and
$3.4\times$
acceleration over CPU and GPU, translating to up to
$6.8\times$
and
$2.0\times$
speedup for realistic FL applications, respectively. We finally evaluate the FLASH design as an ASIC, and it achieves
$23.6\times$
performance improvement upon the FPGA prototype.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.