A Convolutional-Transformer Model for FFR and iFR Assessment From Coronary Angiography

Raffaele Mineo;F. Proietto Salanitri;G. Bellitto;I. Kavasidis;O. De Filippo;M. Millesimo;G. M. De Ferrari;M. Aldinucci;D. Giordano;S. Palazzo;F. D’Ascenzo;C. Spampinato
{"title":"A Convolutional-Transformer Model for FFR and iFR Assessment From Coronary Angiography","authors":"Raffaele Mineo;F. Proietto Salanitri;G. Bellitto;I. Kavasidis;O. De Filippo;M. Millesimo;G. M. De Ferrari;M. Aldinucci;D. Giordano;S. Palazzo;F. D’Ascenzo;C. Spampinato","doi":"10.1109/TMI.2024.3383283","DOIUrl":null,"url":null,"abstract":"The quantification of stenosis severity from X-ray catheter angiography is a challenging task. Indeed, this requires to fully understand the lesion’s geometry by analyzing dynamics of the contrast material, only relying on visual observation by clinicians. To support decision making for cardiac intervention, we propose a hybrid CNN-Transformer model for the assessment of angiography-based non-invasive fractional flow-reserve (FFR) and instantaneous wave-free ratio (iFR) of intermediate coronary stenosis. Our approach predicts whether a coronary artery stenosis is hemodynamically significant and provides direct FFR and iFR estimates. This is achieved through a combination of regression and classification branches that forces the model to focus on the cut-off region of FFR (around 0.8 FFR value), which is highly critical for decision-making. We also propose a spatio-temporal factorization mechanisms that redesigns the transformer’s self-attention mechanism to capture both local spatial and temporal interactions between vessel geometry, blood flow dynamics, and lesion morphology. The proposed method achieves state-of-the-art performance on a dataset of 778 exams from 389 patients. Unlike existing methods, our approach employs a single angiography view and does not require knowledge of the key frame; supervision at training time is provided by a classification loss (based on a threshold of the FFR/iFR values) and a regression loss for direct estimation. Finally, the analysis of model interpretability and calibration shows that, in spite of the complexity of angiographic imaging data, our method can robustly identify the location of the stenosis and correlate prediction uncertainty to the provided output scores.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"43 8","pages":"2866-2877"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582501","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10582501/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quantification of stenosis severity from X-ray catheter angiography is a challenging task. Indeed, this requires to fully understand the lesion’s geometry by analyzing dynamics of the contrast material, only relying on visual observation by clinicians. To support decision making for cardiac intervention, we propose a hybrid CNN-Transformer model for the assessment of angiography-based non-invasive fractional flow-reserve (FFR) and instantaneous wave-free ratio (iFR) of intermediate coronary stenosis. Our approach predicts whether a coronary artery stenosis is hemodynamically significant and provides direct FFR and iFR estimates. This is achieved through a combination of regression and classification branches that forces the model to focus on the cut-off region of FFR (around 0.8 FFR value), which is highly critical for decision-making. We also propose a spatio-temporal factorization mechanisms that redesigns the transformer’s self-attention mechanism to capture both local spatial and temporal interactions between vessel geometry, blood flow dynamics, and lesion morphology. The proposed method achieves state-of-the-art performance on a dataset of 778 exams from 389 patients. Unlike existing methods, our approach employs a single angiography view and does not require knowledge of the key frame; supervision at training time is provided by a classification loss (based on a threshold of the FFR/iFR values) and a regression loss for direct estimation. Finally, the analysis of model interpretability and calibration shows that, in spite of the complexity of angiographic imaging data, our method can robustly identify the location of the stenosis and correlate prediction uncertainty to the provided output scores.
从冠状动脉造影评估 FFR 和 iFR 的卷积变换器模型
通过 X 射线导管血管造影量化血管狭窄的严重程度是一项具有挑战性的任务。事实上,这需要通过分析造影剂的动态变化来充分了解病变的几何形状,而临床医生只能依靠肉眼观察。为了支持心脏介入治疗的决策,我们提出了一种混合 CNN-Transformer 模型,用于评估基于血管造影的无创血流储备分数(FFR)和中度冠状动脉狭窄的瞬时无波比(iFR)。我们的方法可以预测冠状动脉狭窄是否具有显著的血流动力学意义,并提供直接的 FFR 和 iFR 估计值。这是通过将回归和分类分支相结合来实现的,这就迫使模型关注 FFR 的临界区域(FFR 值在 0.8 左右),这对决策至关重要。我们还提出了一种时空因式分解机制,重新设计了转换器的自我注意机制,以捕捉血管几何形状、血流动力学和病变形态之间的局部时空相互作用。所提出的方法在来自 389 名患者的 778 个检查数据集上取得了最先进的性能。与现有方法不同的是,我们的方法采用单一血管造影视图,不需要了解关键帧;训练时的监督由分类损失(基于 FFR/iFR 值的阈值)和用于直接估计的回归损失提供。最后,对模型可解释性和校准性的分析表明,尽管血管造影成像数据很复杂,我们的方法仍能稳健地确定血管狭窄的位置,并将预测的不确定性与所提供的输出分数相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信