Characterizing Sentinel Lymph Node Status in Breast Cancer Patients Using a Deep-Learning Model Compared With Radiologists' Analysis of Grayscale Ultrasound and Lymphosonography.
IF 0.7 4区 医学Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Priscilla Machado, Aylin Tahmasebi, Samuel Fallon, Ji-Bin Liu, Basak E Dogan, Laurence Needleman, Melissa Lazar, Alliric I Willis, Kristin Brill, Susanna Nazarian, Adam Berger, Flemming Forsberg
{"title":"Characterizing Sentinel Lymph Node Status in Breast Cancer Patients Using a Deep-Learning Model Compared With Radiologists' Analysis of Grayscale Ultrasound and Lymphosonography.","authors":"Priscilla Machado, Aylin Tahmasebi, Samuel Fallon, Ji-Bin Liu, Basak E Dogan, Laurence Needleman, Melissa Lazar, Alliric I Willis, Kristin Brill, Susanna Nazarian, Adam Berger, Flemming Forsberg","doi":"10.1097/RUQ.0000000000000683","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>The objective of the study was to use a deep learning model to differentiate between benign and malignant sentinel lymph nodes (SLNs) in patients with breast cancer compared to radiologists' assessments.Seventy-nine women with breast cancer were enrolled and underwent lymphosonography and contrast-enhanced ultrasound (CEUS) examination after subcutaneous injection of ultrasound contrast agent around their tumor to identify SLNs. Google AutoML was used to develop image classification model. Grayscale and CEUS images acquired during the ultrasound examination were uploaded with a data distribution of 80% for training/20% for testing. The performance metric used was area under precision/recall curve (AuPRC). In addition, 3 radiologists assessed SLNs as normal or abnormal based on a clinical established classification. Two-hundred seventeen SLNs were divided in 2 for model development; model 1 included all SLNs and model 2 had an equal number of benign and malignant SLNs. Validation results model 1 AuPRC 0.84 (grayscale)/0.91 (CEUS) and model 2 AuPRC 0.91 (grayscale)/0.87 (CEUS). The comparison between artificial intelligence (AI) and readers' showed statistical significant differences between all models and ultrasound modes; model 1 grayscale AI versus readers, P = 0.047, and model 1 CEUS AI versus readers, P < 0.001. Model 2 r grayscale AI versus readers, P = 0.032, and model 2 CEUS AI versus readers, P = 0.041.The interreader agreement overall result showed κ values of 0.20 for grayscale and 0.17 for CEUS.In conclusion, AutoML showed improved diagnostic performance in balance volume datasets. Radiologist performance was not influenced by the dataset's distribution.</p>","PeriodicalId":49116,"journal":{"name":"Ultrasound Quarterly","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound Quarterly","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RUQ.0000000000000683","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The objective of the study was to use a deep learning model to differentiate between benign and malignant sentinel lymph nodes (SLNs) in patients with breast cancer compared to radiologists' assessments.Seventy-nine women with breast cancer were enrolled and underwent lymphosonography and contrast-enhanced ultrasound (CEUS) examination after subcutaneous injection of ultrasound contrast agent around their tumor to identify SLNs. Google AutoML was used to develop image classification model. Grayscale and CEUS images acquired during the ultrasound examination were uploaded with a data distribution of 80% for training/20% for testing. The performance metric used was area under precision/recall curve (AuPRC). In addition, 3 radiologists assessed SLNs as normal or abnormal based on a clinical established classification. Two-hundred seventeen SLNs were divided in 2 for model development; model 1 included all SLNs and model 2 had an equal number of benign and malignant SLNs. Validation results model 1 AuPRC 0.84 (grayscale)/0.91 (CEUS) and model 2 AuPRC 0.91 (grayscale)/0.87 (CEUS). The comparison between artificial intelligence (AI) and readers' showed statistical significant differences between all models and ultrasound modes; model 1 grayscale AI versus readers, P = 0.047, and model 1 CEUS AI versus readers, P < 0.001. Model 2 r grayscale AI versus readers, P = 0.032, and model 2 CEUS AI versus readers, P = 0.041.The interreader agreement overall result showed κ values of 0.20 for grayscale and 0.17 for CEUS.In conclusion, AutoML showed improved diagnostic performance in balance volume datasets. Radiologist performance was not influenced by the dataset's distribution.
期刊介绍:
Ultrasound Quarterly provides coverage of the newest, most sophisticated ultrasound techniques as well as in-depth analysis of important developments in this dynamic field. The journal publishes reviews of a wide variety of topics including trans-vaginal ultrasonography, detection of fetal anomalies, color Doppler flow imaging, pediatric ultrasonography, and breast sonography.
Official Journal of the Society of Radiologists in Ultrasound