Graph features based classification of bronchial and pleural rub sound signals: the potential of complex network unwrapped.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Ammini Renjini, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman
{"title":"Graph features based classification of bronchial and pleural rub sound signals: the potential of complex network unwrapped.","authors":"Ammini Renjini, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman","doi":"10.1007/s13246-024-01455-4","DOIUrl":null,"url":null,"abstract":"<p><p>The study presents a novel technique for lung auscultation based on graph theory, emphasizing the potential of graph parameters in distinguishing lung sounds and supporting earlier detection of various respiratory pathologies. The frequency spread and the component magnitudes are revealed from the analysis of eighty-five bronchial (BS) and pleural rub (PS) lung sounds employing the power spectral density (PSD) plot and wavelet scalogram. The low-frequency spread, and persistence of the high-intensity frequency components are visible in BS sounds emanating from the uniform cross-sectional area of the trachea. The frictional rub between the pleurae causes a higher frequency spread of low-intensity intermittent frequency components in PS signals. From the complex networks of BS and PS, the extracted graph features are - graph density ([Formula: see text], transitivity ([Formula: see text], degree centrality ([Formula: see text]), betweenness centrality ([Formula: see text], eigenvector centrality ([Formula: see text]), and graph entropy (E<sub>n</sub>). The high values of [Formula: see text] and [Formula: see text] show a strong correlation between distinct segments of the BS signal originating from a consistent cross-sectional tracheal diameter and, hence, the generation of high-intense low-spread frequency components. An intermittent low-intense and a relatively greater frequency spread in PS signal appear as high [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] values. With these complex network parameters as input attributes, the supervised machine learning techniques- discriminant analyses, support vector machines, k-nearest neighbors, and neural network pattern recognition (PRNN)- classify the signals with more than 90% accuracy, with PRNN having 25 neurons in the hidden layer achieving the highest (98.82%).</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1447-1459"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01455-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents a novel technique for lung auscultation based on graph theory, emphasizing the potential of graph parameters in distinguishing lung sounds and supporting earlier detection of various respiratory pathologies. The frequency spread and the component magnitudes are revealed from the analysis of eighty-five bronchial (BS) and pleural rub (PS) lung sounds employing the power spectral density (PSD) plot and wavelet scalogram. The low-frequency spread, and persistence of the high-intensity frequency components are visible in BS sounds emanating from the uniform cross-sectional area of the trachea. The frictional rub between the pleurae causes a higher frequency spread of low-intensity intermittent frequency components in PS signals. From the complex networks of BS and PS, the extracted graph features are - graph density ([Formula: see text], transitivity ([Formula: see text], degree centrality ([Formula: see text]), betweenness centrality ([Formula: see text], eigenvector centrality ([Formula: see text]), and graph entropy (En). The high values of [Formula: see text] and [Formula: see text] show a strong correlation between distinct segments of the BS signal originating from a consistent cross-sectional tracheal diameter and, hence, the generation of high-intense low-spread frequency components. An intermittent low-intense and a relatively greater frequency spread in PS signal appear as high [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] values. With these complex network parameters as input attributes, the supervised machine learning techniques- discriminant analyses, support vector machines, k-nearest neighbors, and neural network pattern recognition (PRNN)- classify the signals with more than 90% accuracy, with PRNN having 25 neurons in the hidden layer achieving the highest (98.82%).

Abstract Image

基于图特征的支气管和胸膜摩擦音信号分类:揭示复杂网络的潜力。
该研究提出了一种基于图论的新型肺部听诊技术,强调了图论参数在区分肺部声音和支持早期检测各种呼吸系统病变方面的潜力。研究采用功率谱密度(PSD)图和小波谱图分析了 85 种支气管(BS)和胸膜摩擦(PS)肺部听诊音,揭示了频率分布和成分大小。在气管均匀横截面积发出的 BS 声中,可以看到低频扩散和高强度频率成分的持续存在。在 PS 信号中,胸膜之间的摩擦会导致低强度间歇频率成分的高频扩散。从 BS 和 PS 的复杂网络中提取的图特征有:图密度([公式:见正文])、传递性([公式:见正文])、度中心性([公式:见正文])、度间中心性([公式:见正文])、特征向量中心性([公式:见正文])和图熵(En)。公式:见正文]和[公式:见正文]的高值表明,BS 信号的不同区段之间有很强的相关性,这些区段源自一致的气管横截面直径,因此产生了高强度低传播的频率成分。PS 信号中的间歇性低强度和相对较大的频率分布分别显示为高[公式:见正文]、[公式:见正文]、[公式:见正文]和[公式:见正文]值。以这些复杂的网络参数作为输入属性,有监督的机器学习技术--判别分析、支持向量机、k-最近邻和神经网络模式识别(PRNN)--对信号进行分类的准确率超过 90%,其中隐层有 25 个神经元的 PRNN 的准确率最高(98.82%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信