Fault tolerance challenges in wearable computing for vital applications: a survey.

Q3 Engineering
Majid Sepahvand, Maytham N Meqdad, Fardin Abdali-Mohammadi
{"title":"Fault tolerance challenges in wearable computing for vital applications: a survey.","authors":"Majid Sepahvand, Maytham N Meqdad, Fardin Abdali-Mohammadi","doi":"10.1080/03091902.2024.2371789","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable computers can be used in different domains including healthcare. However, due to suffering from challenges such as faults their applications may be limited in real practice. So, in designing wearable devices, designer must take into account fault tolerance techniques. This study aims to investigate the challenging issues of fault tolerance in wearable computing. For this purpose, different aspects of fault tolerance in wearable computing namely hardware, software, energy, and communication are studied; and state of the art research regarding each category is analysed. In this analysis, the performed works using the fault tolerance techniques are included in the form of 25 components and referred to as \"fault tolerance plan\". Using this fault tolerance plan and the appropriate profile, the fault tolerance of any wearable system can be evaluated. In this article, fault tolerances of several of the most prominent works conducted in the field of wearable computing were evaluated. The obtained results, with the medical profile, showed that only one wearable system had a fault tolerance of 91%, with the other systems having a fault tolerance of 24% or less. Also, the results obtained from evaluating these works, with the military profile, showed that only one wearable system had a fault tolerance of 76%, with the other systems having a fault tolerance of 19% or less. These mean that few studies have been conducted on the fault tolerance of wearable computing.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2371789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable computers can be used in different domains including healthcare. However, due to suffering from challenges such as faults their applications may be limited in real practice. So, in designing wearable devices, designer must take into account fault tolerance techniques. This study aims to investigate the challenging issues of fault tolerance in wearable computing. For this purpose, different aspects of fault tolerance in wearable computing namely hardware, software, energy, and communication are studied; and state of the art research regarding each category is analysed. In this analysis, the performed works using the fault tolerance techniques are included in the form of 25 components and referred to as "fault tolerance plan". Using this fault tolerance plan and the appropriate profile, the fault tolerance of any wearable system can be evaluated. In this article, fault tolerances of several of the most prominent works conducted in the field of wearable computing were evaluated. The obtained results, with the medical profile, showed that only one wearable system had a fault tolerance of 91%, with the other systems having a fault tolerance of 24% or less. Also, the results obtained from evaluating these works, with the military profile, showed that only one wearable system had a fault tolerance of 76%, with the other systems having a fault tolerance of 19% or less. These mean that few studies have been conducted on the fault tolerance of wearable computing.

用于重要应用的可穿戴计算中的容错挑战:调查。
可穿戴计算机可用于包括医疗保健在内的不同领域。然而,由于存在故障等挑战,它们在实际应用中可能会受到限制。因此,在设计可穿戴设备时,设计师必须考虑到容错技术。本研究旨在探讨可穿戴计算中具有挑战性的容错问题。为此,研究了可穿戴计算中容错的不同方面,即硬件、软件、能源和通信,并分析了有关每个类别的最新研究成果。在分析中,使用容错技术完成的工作以 25 个组件的形式包含在内,并称为 "容错计划"。使用该容错计划和适当的配置文件,可对任何可穿戴系统的容错性进行评估。本文评估了在可穿戴计算领域开展的几项最重要工作的容错性。结果显示,只有一个可穿戴系统的容错率达到 91%,其他系统的容错率均在 24% 或以下。此外,以军事为背景对这些作品进行评估的结果表明,只有一个可穿戴系统的容错率为 76%,其他系统的容错率为 19% 或更低。这说明对可穿戴计算容错性的研究还很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信