Quantification of the Plasma Concentration of Vadadustat by High-Performance Liquid Chromatography with Ultraviolet Detection and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry.
{"title":"Quantification of the Plasma Concentration of Vadadustat by High-Performance Liquid Chromatography with Ultraviolet Detection and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry.","authors":"Satoshi Yokoyama, Junichi Nakagawa, Michiko Shimada, Kayo Ueno, Masahiro Ishiyama, Norio Nakamura, Hirofumi Tomita, Takenori Niioka","doi":"10.1097/FTD.0000000000001238","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An inexpensive, simple, and accurate plasma concentration measurement system is needed to actively conduct pharmacokinetic and pharmacodynamic analyses of vadadustat, hypoxia-inducible factor-prolyl hydroxylase inhibitor, in clinical settings. In this study, the authors aimed to develop a method for measuring vadadustat in human plasma that could be applied for therapeutic drug monitoring using high-performance liquid chromatography with ultraviolet detection (HPLC-UV) in a clinical setting.</p><p><strong>Methods: </strong>Plasma samples (100 μL) were pretreated with acetonitrile using butyl paraoxybenzoate as an internal standard. Chromatographic separation was performed on a SunShell PFP C18 column (2.6 μm, 4.6 mm × 150 mm). The mobile phase consisted of (A) 20 mM of phosphate buffer (pH 2.4) and (B) acetonitrile (60:40, v/v), delivered isocratically at a flow rate of 1 mL/min. The analytes were detected by UV absorbance at a wavelength of 220 nm, and the column temperature was 40°C. To evaluate the applicability of HPLC-UV in a clinical setting, blood samples were collected at 19 time points from 7 patients who had been taking vadadustat.</p><p><strong>Results: </strong>The calibration curve was linear over the concentration range of 0.2-150 mcg/mL (R2 > 0.99). Intra-assay and interassay accuracy, precision, and stability met the Food and Drug Administration recommendations. The vadadustat plasma concentrations of patients analyzed using the current HPLC-UV method were almost equal to those measured using ultra-performance liquid chromatography-tandem mass spectrometry (mean difference: 0.13 mcg/mL). Large variability in the dose-adjusted plasma concentrations of vadadustat at 12 hours after administration was observed between patients (coefficient of variation = 57.6%).</p><p><strong>Conclusions: </strong>This HPLC-UV method is a simple, accurate quantification method for evaluating plasma concentrations in patients taking vadadustat in a clinical setting.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Drug Monitoring","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FTD.0000000000001238","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: An inexpensive, simple, and accurate plasma concentration measurement system is needed to actively conduct pharmacokinetic and pharmacodynamic analyses of vadadustat, hypoxia-inducible factor-prolyl hydroxylase inhibitor, in clinical settings. In this study, the authors aimed to develop a method for measuring vadadustat in human plasma that could be applied for therapeutic drug monitoring using high-performance liquid chromatography with ultraviolet detection (HPLC-UV) in a clinical setting.
Methods: Plasma samples (100 μL) were pretreated with acetonitrile using butyl paraoxybenzoate as an internal standard. Chromatographic separation was performed on a SunShell PFP C18 column (2.6 μm, 4.6 mm × 150 mm). The mobile phase consisted of (A) 20 mM of phosphate buffer (pH 2.4) and (B) acetonitrile (60:40, v/v), delivered isocratically at a flow rate of 1 mL/min. The analytes were detected by UV absorbance at a wavelength of 220 nm, and the column temperature was 40°C. To evaluate the applicability of HPLC-UV in a clinical setting, blood samples were collected at 19 time points from 7 patients who had been taking vadadustat.
Results: The calibration curve was linear over the concentration range of 0.2-150 mcg/mL (R2 > 0.99). Intra-assay and interassay accuracy, precision, and stability met the Food and Drug Administration recommendations. The vadadustat plasma concentrations of patients analyzed using the current HPLC-UV method were almost equal to those measured using ultra-performance liquid chromatography-tandem mass spectrometry (mean difference: 0.13 mcg/mL). Large variability in the dose-adjusted plasma concentrations of vadadustat at 12 hours after administration was observed between patients (coefficient of variation = 57.6%).
Conclusions: This HPLC-UV method is a simple, accurate quantification method for evaluating plasma concentrations in patients taking vadadustat in a clinical setting.
期刊介绍:
Therapeutic Drug Monitoring is a peer-reviewed, multidisciplinary journal directed to an audience of pharmacologists, clinical chemists, laboratorians, pharmacists, drug researchers and toxicologists. It fosters the exchange of knowledge among the various disciplines–clinical pharmacology, pathology, toxicology, analytical chemistry–that share a common interest in Therapeutic Drug Monitoring. The journal presents studies detailing the various factors that affect the rate and extent drugs are absorbed, metabolized, and excreted. Regular features include review articles on specific classes of drugs, original articles, case reports, technical notes, and continuing education articles.