Enhancing Neutrophil Cytotoxicity of a Panel of Clinical EGFR Antibodies by Fc Engineering to IgA3.0.

IF 5.3 2区 医学 Q1 ONCOLOGY
Chilam Chan, J H Marco Jansen, Ilona S T Hendriks, Ida C van der Peet, Meggy E L Verdonschot, Elsemieke M Passchier, Maria Tsioumpekou, Maaike Nederend, Sharon A Klomp, Thomas Valerius, Matthias Peipp, Jeanette H W Leusen, Patricia A Olofsen
{"title":"Enhancing Neutrophil Cytotoxicity of a Panel of Clinical EGFR Antibodies by Fc Engineering to IgA3.0.","authors":"Chilam Chan, J H Marco Jansen, Ilona S T Hendriks, Ida C van der Peet, Meggy E L Verdonschot, Elsemieke M Passchier, Maria Tsioumpekou, Maaike Nederend, Sharon A Klomp, Thomas Valerius, Matthias Peipp, Jeanette H W Leusen, Patricia A Olofsen","doi":"10.1158/1535-7163.MCT-24-0217","DOIUrl":null,"url":null,"abstract":"<p><p>EGFR plays an essential role in cellular signaling pathways that regulate cell growth, proliferation, and survival and is often dysregulated in cancer. Several monoclonal IgG antibodies have been clinically tested over the years, which exert their function via blocking the ligand binding domain (thereby inhibiting downstream signaling) and inducing Fc-related effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, these IgG antibodies do not optimally recruit neutrophils, which are the most abundant white blood cell population in humans. Therefore, we reformatted six therapeutic EGFR antibodies (cetuximab, panitumumab, nimotuzumab, necitumumab, zalutumumab, and matuzumab) into the IgA3.0 format, which is an IgA2 isotype adapted for clinical application. Reformatting these antibodies preserved Fab-mediated functions such as EGFR binding, growth inhibition, and ligand blockade. In addition, whole leukocyte ADCC was significantly increased when using this panel of IgA3.0 antibodies compared with their respective IgG counterparts, with no major differences between IgA3.0 antibodies. In vivo, IgA3.0 matuzumab outperformed the other antibodies, resulting in the strongest suppression of tumor outgrowth in a long intraperitoneal model. We showed that neutrophils are important for the suppression of tumor outgrowth. IgA3.0 matuzumab exhibited reduced receptor internalization compared with the other antibodies, possibly accounting for its superior in vivo Fc-mediated tumor cell killing efficacy. In conclusion, reformatting EGFR antibodies into an IgA3.0 format increased Fc-mediated killing while retaining Fab-mediated functions and could therefore be a good alternative for the currently available antibody therapies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

EGFR plays an essential role in cellular signaling pathways that regulate cell growth, proliferation, and survival and is often dysregulated in cancer. Several monoclonal IgG antibodies have been clinically tested over the years, which exert their function via blocking the ligand binding domain (thereby inhibiting downstream signaling) and inducing Fc-related effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, these IgG antibodies do not optimally recruit neutrophils, which are the most abundant white blood cell population in humans. Therefore, we reformatted six therapeutic EGFR antibodies (cetuximab, panitumumab, nimotuzumab, necitumumab, zalutumumab, and matuzumab) into the IgA3.0 format, which is an IgA2 isotype adapted for clinical application. Reformatting these antibodies preserved Fab-mediated functions such as EGFR binding, growth inhibition, and ligand blockade. In addition, whole leukocyte ADCC was significantly increased when using this panel of IgA3.0 antibodies compared with their respective IgG counterparts, with no major differences between IgA3.0 antibodies. In vivo, IgA3.0 matuzumab outperformed the other antibodies, resulting in the strongest suppression of tumor outgrowth in a long intraperitoneal model. We showed that neutrophils are important for the suppression of tumor outgrowth. IgA3.0 matuzumab exhibited reduced receptor internalization compared with the other antibodies, possibly accounting for its superior in vivo Fc-mediated tumor cell killing efficacy. In conclusion, reformatting EGFR antibodies into an IgA3.0 format increased Fc-mediated killing while retaining Fab-mediated functions and could therefore be a good alternative for the currently available antibody therapies.

通过 IgA3.0 的 Fc 工程增强一组临床表皮生长因子受体抗体的中性粒细胞毒性。
表皮生长因子受体(EGFR)在调控细胞生长、增殖和存活的细胞信号通路中发挥着重要作用,在癌症中经常出现失调。多年来,临床试验了多种单克隆 IgG 抗体,它们通过阻断配体结合域(从而抑制下游信号传导)和诱导 Fc 相关效应器功能(如抗体依赖性细胞毒性(ADCC)和抗体依赖性细胞吞噬(ADCP))来发挥其功能。然而,这些 IgG 抗体并不能最佳地募集中性粒细胞,而中性粒细胞是迄今为止人类数量最多的白细胞群。因此,我们将六种治疗性表皮生长因子受体(EGFR)抗体(西妥昔单抗、帕尼单抗、尼妥珠单抗、奈替单抗、扎鲁珠单抗和马妥珠单抗)重新格式化为 IgA3.0 格式,这是一种 IgA2 同工型,已被应用于临床。将这些抗体重新格式化后,它们仍保留了 Fab 介导的功能,如表皮生长因子受体结合、生长抑制和配体阻断。此外,与各自的 IgG 抗体相比,使用这组 IgA3.0 抗体时,整个白细胞的 ADCC 显著增加,而 IgA3.0 抗体之间没有重大差异。在体内,IgA3.0 matuzumab的表现优于其他抗体,在长腹膜模型中对肿瘤生长的抑制作用最强。我们的研究表明,中性粒细胞对抑制肿瘤生长非常重要。与其他抗体相比,IgA3.0 matuzumab的受体内化程度降低,这可能是其体内Fc介导的肿瘤细胞杀伤效力更强的原因。总之,将表皮生长因子受体抗体重新格式化为 IgA3.0 格式可提高 Fc 介导的杀伤力,同时保留 Fab 介导的功能,因此可作为现有抗体疗法的良好替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信