Metabolic engineering combined with site-directed saturated mutations of α-keto acid decarboxylase for efficient production of 6-aminocaproic acid and 1,6-hexamethylenediamine

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tiantian Wang, Pan Ye, Xue Xu, Mengqing Lu, Xinyu Zhang, Naiqiang Li
{"title":"Metabolic engineering combined with site-directed saturated mutations of α-keto acid decarboxylase for efficient production of 6-aminocaproic acid and 1,6-hexamethylenediamine","authors":"Tiantian Wang,&nbsp;Pan Ye,&nbsp;Xue Xu,&nbsp;Mengqing Lu,&nbsp;Xinyu Zhang,&nbsp;Naiqiang Li","doi":"10.1002/bit.28795","DOIUrl":null,"url":null,"abstract":"<p>6-Aminocaproic acid (6ACA) and 1,6-hexamethylenediamine (HMDA) are key precursors for nylon synthesis, and both are produced using petroleum-based chemical processes. However, the utilization of bio-based raw materials for biological production of monomers is crucial for nylon industry. In this study, we demonstrated that metabolic engineering of <i>Escherichia coli</i> and selected mutations of α-keto acid decarboxylase successfully synthesized 6ACA and HMDA. An artificial iterative cycle from <span>l</span>-lysine to chain-extended α-ketoacids was introduced into <i>Escherichia coli</i> BL21 (DE3). Then, the extended α-ketoacids were decarboxylated and oxidized for 6ACA production. Overexpression of catalase (KatE) combined with the site-directed mutations of α-isopropylmalate synthase (LeuA) contributed synergistic enhancement effect on synthesis of 6ACA, resulting in a 1.3-fold increase in 6ACA titer. Selected mutations in α-keto acid decarboxylase (KivD) improved its specificity and 170.00 ± 5.57 mg/L of 6ACA with a yield of 0.13 mol/mol (6ACA/<span>l</span>-lysine hydrochloride) was achieved by shake flask cultivation of the engineered strain with the KivD# (F381Y/V461I). Meanwhile, the engineered <i>E. coli</i> could accumulate 84.67 ± 4.04 mg/L of HMDA with a yield of 0.08 mol/mol (HMDA/<span>l</span>-lysine hydrochloride) by replacing aldehyde dehydrogenase with bi-aminotransferases. This achievement marks a significant advancement in the biological synthesis of 6-carbon compounds, since the biosynthetic pathways of HMDA are rarely identified.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28795","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

6-Aminocaproic acid (6ACA) and 1,6-hexamethylenediamine (HMDA) are key precursors for nylon synthesis, and both are produced using petroleum-based chemical processes. However, the utilization of bio-based raw materials for biological production of monomers is crucial for nylon industry. In this study, we demonstrated that metabolic engineering of Escherichia coli and selected mutations of α-keto acid decarboxylase successfully synthesized 6ACA and HMDA. An artificial iterative cycle from l-lysine to chain-extended α-ketoacids was introduced into Escherichia coli BL21 (DE3). Then, the extended α-ketoacids were decarboxylated and oxidized for 6ACA production. Overexpression of catalase (KatE) combined with the site-directed mutations of α-isopropylmalate synthase (LeuA) contributed synergistic enhancement effect on synthesis of 6ACA, resulting in a 1.3-fold increase in 6ACA titer. Selected mutations in α-keto acid decarboxylase (KivD) improved its specificity and 170.00 ± 5.57 mg/L of 6ACA with a yield of 0.13 mol/mol (6ACA/l-lysine hydrochloride) was achieved by shake flask cultivation of the engineered strain with the KivD# (F381Y/V461I). Meanwhile, the engineered E. coli could accumulate 84.67 ± 4.04 mg/L of HMDA with a yield of 0.08 mol/mol (HMDA/l-lysine hydrochloride) by replacing aldehyde dehydrogenase with bi-aminotransferases. This achievement marks a significant advancement in the biological synthesis of 6-carbon compounds, since the biosynthetic pathways of HMDA are rarely identified.

Abstract Image

代谢工程与 α-酮酸脱羧酶的定点饱和突变相结合,高效生产 6-氨基己酸和 1,6-六甲基二胺。
6-Aminocaproic acid(6ACA)和 1,6-hexamethylenediamine(HMDA)是尼龙合成的关键前体,这两种物质都是通过石油为基础的化学工艺生产的。然而,利用生物基原料进行单体的生物生产对尼龙工业至关重要。在这项研究中,我们证明了大肠杆菌的代谢工程和α-酮酸脱羧酶的选择性突变成功合成了6ACA和HMDA。在大肠杆菌 BL21 (DE3) 中引入了从赖氨酸到链延伸α-酮酸的人工迭代循环。然后,延长的 α-酮酸被脱羧和氧化,从而产生 6ACA。过量表达过氧化氢酶(KatE)和α-异丙基丙二酸合成酶(LeuA)的定点突变对 6ACA 的合成有协同增效作用,使 6ACA 的滴度增加了 1.3 倍。α-酮酸脱羧酶(KivD)的选择性突变提高了其特异性,通过摇瓶培养含有 KivD# (F381Y/V461I)的工程菌株,可获得 170.00 ± 5.57 mg/L 的 6ACA,产率为 0.13 mol/mol(6ACA/ l-赖氨酸盐酸盐)。同时,通过用双氨基转移酶取代醛脱氢酶,工程大肠杆菌可积累 84.67 ± 4.04 mg/L 的 HMDA,产率为 0.08 mol/mol(HMDA/ l-lysine hydrochloride)。这一成果标志着 6 碳化合物生物合成领域的重大进展,因为 HMDA 的生物合成途径很少被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信