Ring formation of transition metal trichalcogenide TaSe3 using vapor liquid process.

IF 1.3 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Masakatsu Tsubota, Masahito Watanabe
{"title":"Ring formation of transition metal trichalcogenide TaSe<sub>3</sub> using vapor liquid process.","authors":"Masakatsu Tsubota, Masahito Watanabe","doi":"10.1107/S2052520624004013","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of TaSe<sub>3</sub> ring-shaped crystals displaying the coffee ring effect is investigated. By recrystallizing TaSe<sub>3</sub> microcrystals dissolved in droplets of condensed Se gas, ring-shaped crystals were successfully grown. This novel method for ring formation effectively addressed the issue of connecting the edges of the crystal. Consequently, the synthesis method has the capability to grow MX<sub>3</sub> ring-shaped crystals in any location where droplets can condense, can now be grown in specific locations, thus creating opportunities for advancements in electronic component development.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520624004013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of TaSe3 ring-shaped crystals displaying the coffee ring effect is investigated. By recrystallizing TaSe3 microcrystals dissolved in droplets of condensed Se gas, ring-shaped crystals were successfully grown. This novel method for ring formation effectively addressed the issue of connecting the edges of the crystal. Consequently, the synthesis method has the capability to grow MX3 ring-shaped crystals in any location where droplets can condense, can now be grown in specific locations, thus creating opportunities for advancements in electronic component development.

Abstract Image

利用气液法形成过渡金属三钙钛矿 TaSe3 的环。
研究了显示咖啡环效应的 TaSe3 环形晶体的合成。通过对溶解在凝结 Se 气体液滴中的 TaSe3 微晶进行再结晶,成功地生长出了环形晶体。这种新颖的环形晶体形成方法有效地解决了晶体边缘的连接问题。因此,这种合成方法能够在液滴能够凝结的任何位置生长出 MX3 环形晶体,现在也可以在特定位置生长,从而为电子元件的开发带来了机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta crystallographica Section B, Structural science, crystal engineering and materials
Acta crystallographica Section B, Structural science, crystal engineering and materials CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
3.60
自引率
5.30%
发文量
0
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信