Fractional Fokker-Planck-Kolmogorov equations with Hölder continuous drift

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rongrong Tian, Jinlong Wei
{"title":"Fractional Fokker-Planck-Kolmogorov equations with Hölder continuous drift","authors":"Rongrong Tian, Jinlong Wei","doi":"10.1007/s13540-024-00309-w","DOIUrl":null,"url":null,"abstract":"<p>We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index <span>\\(\\alpha \\in [1,2)\\)</span> and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\alpha +\\beta }({{\\mathbb {R}}}^d))\\cap W^{1,p}([0,T];{{\\mathcal {C}}}_b^\\beta ({{\\mathbb {R}}}^d))\\)</span> solution under the assumptions that the drift coefficient and nonhomogeneous term are in <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\beta }({{\\mathbb {R}}}^d))\\)</span> with <span>\\(p\\in [\\alpha /(\\alpha -1),+\\infty ]\\)</span> and <span>\\(\\beta \\in (0,1)\\)</span>. As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\beta }({\\mathbb R}^d;{{\\mathbb {R}}}^d))\\)</span> and driven by the <span>\\(\\alpha \\)</span>-stable process for <span>\\(\\beta &gt; 1-\\alpha /2\\)</span> and <span>\\(p&gt;2\\alpha /(\\alpha +2\\beta -2)\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00309-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index \(\alpha \in [1,2)\) and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of \(L^p([0,T];{{\mathcal {C}}}_b^{\alpha +\beta }({{\mathbb {R}}}^d))\cap W^{1,p}([0,T];{{\mathcal {C}}}_b^\beta ({{\mathbb {R}}}^d))\) solution under the assumptions that the drift coefficient and nonhomogeneous term are in \(L^p([0,T];{{\mathcal {C}}}_b^{\beta }({{\mathbb {R}}}^d))\) with \(p\in [\alpha /(\alpha -1),+\infty ]\) and \(\beta \in (0,1)\). As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in \(L^p([0,T];{{\mathcal {C}}}_b^{\beta }({\mathbb R}^d;{{\mathbb {R}}}^d))\) and driven by the \(\alpha \)-stable process for \(\beta > 1-\alpha /2\) and \(p>2\alpha /(\alpha +2\beta -2)\).

霍尔德连续漂移的分数福克-普朗克-科尔莫戈罗夫方程
我们研究了分数指数为 \(\alpha \in [1,2)\) 的分数 Fokker-Planck-Kolmogorov 方程,并使用向量值 Calderón-Zygmund 定理得到了 \(L^p([0,T];{{\mathcal {C}}_b^{α +\beta }({{\mathbb {R}}^d))\cap W^{1,p}([0,T];{{/mathcal{C}}}_b^/beta({{/mathbb {R}}}^d)) 解,前提是漂移系数和非均质项都在\(L^p([0,T];{{mathcal{C}}}_b^{beta}({{mathbb{R}}^d))中,并且(p在 [\alpha /(\alpha -1),+\infty ]\) 和(\beta 在 (0,1)中)。作为应用,我们证明了时间非均质随机微分方程在 L^p([0,T];(L^p([0,T]; {{\mathcal {C}}}_b^{beta }({\mathbb R}}^d;{{\mathbb {R}}^d))\)中的漂移,并由\(\alpha \)-稳定过程驱动为\(\beta > 1-\alpha /2\)和\(p>2\alpha /(\alpha +2\beta -2)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信