{"title":"Uniform Substructuring Preconditioners for High Order FEM on Triangles and the Influence of Nodal Basis Functions","authors":"Mark Ainsworth, Shuai Jiang","doi":"10.1137/23m1561920","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1465-1491, August 2024. <br/> Abstract. A robust substructuring type preconditioner is developed for high order approximation of problem for which the element matrix takes the form [math] where [math] and [math] are the mass and stiffness matrices, respectively. A standard preconditioner for the pure stiffness matrix results in a condition number bounded by [math] where [math] blows up as [math]. It is shown that the best uniform bound in [math] that one can hope for is [math]. More precisely, we show that the upper envelope of the bound [math] is [math]. What, then, can be done to obtain a preconditioner that is robust for all [math]? The solution turns out to be a relatively minor modification of the basic substructuring algorithm of [I. Babuška et al., SIAM J. Numer. Anal., 28 (1991), pp. 624–661]: one can simply augment the preconditioner with a suitable Jacobi smoothener over the coarse grid degrees of freedom. This is shown to result in a condition number bounded by [math] where the constant is independent of [math]. Numerical results are given which shows that the simple expedient of augmentation with nodal smoothening reduces the condition number by a factor of up to two orders of magnitude.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1561920","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1465-1491, August 2024. Abstract. A robust substructuring type preconditioner is developed for high order approximation of problem for which the element matrix takes the form [math] where [math] and [math] are the mass and stiffness matrices, respectively. A standard preconditioner for the pure stiffness matrix results in a condition number bounded by [math] where [math] blows up as [math]. It is shown that the best uniform bound in [math] that one can hope for is [math]. More precisely, we show that the upper envelope of the bound [math] is [math]. What, then, can be done to obtain a preconditioner that is robust for all [math]? The solution turns out to be a relatively minor modification of the basic substructuring algorithm of [I. Babuška et al., SIAM J. Numer. Anal., 28 (1991), pp. 624–661]: one can simply augment the preconditioner with a suitable Jacobi smoothener over the coarse grid degrees of freedom. This is shown to result in a condition number bounded by [math] where the constant is independent of [math]. Numerical results are given which shows that the simple expedient of augmentation with nodal smoothening reduces the condition number by a factor of up to two orders of magnitude.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.