Advances on broadband and resonant chiral metasurfaces

Qian-Mei Deng, Xin Li, Meng-Xia Hu, Feng-Jun Li, Xiangping Li, Zi-Lan Deng
{"title":"Advances on broadband and resonant chiral metasurfaces","authors":"Qian-Mei Deng, Xin Li, Meng-Xia Hu, Feng-Jun Li, Xiangping Li, Zi-Lan Deng","doi":"10.1038/s44310-024-00018-5","DOIUrl":null,"url":null,"abstract":"Chirality describes mirror symmetry breaking in geometric structures or certain physical quantities. The interaction between chiral structure and chiral light provides a rich collection of means for studying the chirality of substances. Recently, optical chiral metasurfaces have emerged as planar or quasi-planar photonic devices composed of subwavelength chiral unit cells, offering distinct appealing optical responses to circularly polarized light with opposite handedness. The chiroptical effects in optical metasurfaces can be manifested in the absorption, scattering, and even emission spectra under the circular polarization bases. A broadband chiroptical effect is highly desired for many passive chiral applications such as pure circular polarizers, chiral imaging, and chiral holography, in which cases the resonances should be avoided. On the other hand, resonant chiroptical responses are particularly needed in many situations requiring strong chiral field enhancement such as chiral sensing and chiral emission. This article reviews the latest research on both broadband and resonant chiral metasurfaces. First, we discuss the basic principle of different types of chiroptical effects including 3D/2D optical chirality and intrinsic/extrinsic optical chirality. Then we review typical means for broadband chiral metasurfaces, and related chiral photonic devices including broadband circular polarizers, chiral imaging and chiral holography. Then, we discuss the interaction between chiral light and matter enhanced by resonant chiral metasurfaces, especially for the chiral bound states in the continuum metasurfaces with ultra-high quality factors, which are particularly important for chiral molecule sensing, and chiral light sources. In the final section, the review concludes with an outlook on future directions in chiral photonics.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00018-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00018-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chirality describes mirror symmetry breaking in geometric structures or certain physical quantities. The interaction between chiral structure and chiral light provides a rich collection of means for studying the chirality of substances. Recently, optical chiral metasurfaces have emerged as planar or quasi-planar photonic devices composed of subwavelength chiral unit cells, offering distinct appealing optical responses to circularly polarized light with opposite handedness. The chiroptical effects in optical metasurfaces can be manifested in the absorption, scattering, and even emission spectra under the circular polarization bases. A broadband chiroptical effect is highly desired for many passive chiral applications such as pure circular polarizers, chiral imaging, and chiral holography, in which cases the resonances should be avoided. On the other hand, resonant chiroptical responses are particularly needed in many situations requiring strong chiral field enhancement such as chiral sensing and chiral emission. This article reviews the latest research on both broadband and resonant chiral metasurfaces. First, we discuss the basic principle of different types of chiroptical effects including 3D/2D optical chirality and intrinsic/extrinsic optical chirality. Then we review typical means for broadband chiral metasurfaces, and related chiral photonic devices including broadband circular polarizers, chiral imaging and chiral holography. Then, we discuss the interaction between chiral light and matter enhanced by resonant chiral metasurfaces, especially for the chiral bound states in the continuum metasurfaces with ultra-high quality factors, which are particularly important for chiral molecule sensing, and chiral light sources. In the final section, the review concludes with an outlook on future directions in chiral photonics.

Abstract Image

宽带和共振手性元表面的研究进展
手性描述了几何结构或某些物理量中的镜像对称破缺。手性结构与手性光之间的相互作用为研究物质的手性提供了丰富的手段。最近,光学手性元表面作为由亚波长手性单元组成的平面或准平面光子器件出现了,它对具有相反手性的圆偏振光提供了独特的吸引人的光学响应。在圆偏振基底下,光学超表面中的旋光效应可表现为吸收、散射甚至发射光谱。许多无源手性应用(如纯圆偏振器、手性成像和手性全息术)都非常需要宽带自旋效应,在这种情况下,应避免共振。另一方面,在手性传感和手性发射等许多需要强手性场增强的情况下,尤其需要共振手性响应。本文回顾了有关宽带和共振手性元表面的最新研究。首先,我们讨论了不同类型手性效应的基本原理,包括三维/二维光学手性和本征/外征光学手性。然后,我们回顾了宽带手性元表面的典型方法,以及相关的手性光子器件,包括宽带圆偏振器、手性成像和手性全息。然后,我们讨论了通过共振手性元表面增强的手性光与物质之间的相互作用,特别是具有超高品质因数的连续元表面中的手性束缚态,这对于手性分子传感和手性光源尤为重要。最后,本综述展望了手性光子学的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信