Products of boundary classes on M¯0,n via balanced weights

IF 0.8 4区 数学 Q2 MATHEMATICS
Maria Gillespie , Jake Levinson
{"title":"Products of boundary classes on M¯0,n via balanced weights","authors":"Maria Gillespie ,&nbsp;Jake Levinson","doi":"10.1016/j.exmath.2024.125587","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we give a simple closed formula for an arbitrary product, landing in dimension 0, of boundary classes on the Deligne–Mumford moduli space <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>. For any such boundary strata <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></mrow></msub></mrow></math></span>, we show the intersection product <span><math><mrow><mo>∫</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mrow><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>]</mo></mrow></mrow></math></span> is either a signed product of multinomial coefficients, or zero, and provide a simple criterion for determining when it is nonzero.</p><p>We do not claim originality for our product formula, but to our knowledge it does not appear elsewhere in the literature.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086924000549","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we give a simple closed formula for an arbitrary product, landing in dimension 0, of boundary classes on the Deligne–Mumford moduli space M¯0,n. For any such boundary strata XT1,,XT, we show the intersection product i=1[XTi] is either a signed product of multinomial coefficients, or zero, and provide a simple criterion for determining when it is nonzero.

We do not claim originality for our product formula, but to our knowledge it does not appear elsewhere in the literature.

通过平衡加权的 M¯0,n 上边界类的乘积
在本注释中,我们给出了德利涅-芒福德模空间 M¯0,n 上任意边界层乘积的一个简单封闭公式。对于任何这样的边界层 XT1,...,XTℓ, 我们证明了交乘 ∫∏i=1ℓ[XTi] 要么是多项式系数的有符号乘积,要么为零,并提供了一个简单的判据来确定它何时为非零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信