Bifurcation analysis of a two-dimensional magnetic Rayleigh–Bénard problem

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Fabian Laakmann , Nicolas Boullé
{"title":"Bifurcation analysis of a two-dimensional magnetic Rayleigh–Bénard problem","authors":"Fabian Laakmann ,&nbsp;Nicolas Boullé","doi":"10.1016/j.physd.2024.134270","DOIUrl":null,"url":null,"abstract":"<div><p>We perform a bifurcation analysis of a two-dimensional magnetic Rayleigh–Bénard problem using a numerical technique called deflated continuation. Our aim is to study the influence of the magnetic field on the bifurcation diagram as the Chandrasekhar number <span><math><mi>Q</mi></math></span> increases and compare it to the standard (non-magnetic) Rayleigh–Bénard problem. We compute steady states at a high Chandrasekhar number of <span><math><mrow><mi>Q</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> over a range of the Rayleigh number <span><math><mrow><mn>0</mn><mo>≤</mo><mi>Ra</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>. These solutions are obtained by combining deflation with a continuation of steady states at low Chandrasekhar number, which allows us to explore the influence of the strength of the magnetic field as <span><math><mi>Q</mi></math></span> increases from low coupling, where the magnetic effect is almost negligible, to strong coupling at <span><math><mrow><mi>Q</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. We discover a large profusion of states with rich dynamics and observe a complex bifurcation structure with several pitchfork, Hopf, and saddle–node bifurcations. Our numerical simulations show that the onset of bifurcations in the problem is delayed when <span><math><mi>Q</mi></math></span> increases, while solutions with fluid velocity patterns aligning with the background vertical magnetic field are privileged. Additionally, we report a branch of states that stabilizes at high magnetic coupling, suggesting that one may take advantage of the magnetic field to discriminate solutions.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002215/pdfft?md5=2733084aff564156edd0196aa3c4945d&pid=1-s2.0-S0167278924002215-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We perform a bifurcation analysis of a two-dimensional magnetic Rayleigh–Bénard problem using a numerical technique called deflated continuation. Our aim is to study the influence of the magnetic field on the bifurcation diagram as the Chandrasekhar number Q increases and compare it to the standard (non-magnetic) Rayleigh–Bénard problem. We compute steady states at a high Chandrasekhar number of Q=103 over a range of the Rayleigh number 0Ra105. These solutions are obtained by combining deflation with a continuation of steady states at low Chandrasekhar number, which allows us to explore the influence of the strength of the magnetic field as Q increases from low coupling, where the magnetic effect is almost negligible, to strong coupling at Q=103. We discover a large profusion of states with rich dynamics and observe a complex bifurcation structure with several pitchfork, Hopf, and saddle–node bifurcations. Our numerical simulations show that the onset of bifurcations in the problem is delayed when Q increases, while solutions with fluid velocity patterns aligning with the background vertical magnetic field are privileged. Additionally, we report a branch of states that stabilizes at high magnetic coupling, suggesting that one may take advantage of the magnetic field to discriminate solutions.

二维磁性 Rayleigh-Bénard 问题的分岔分析
我们使用一种称为 "膨胀延续 "的数值技术对二维磁性雷利-贝纳德问题进行了分岔分析。我们的目的是研究随着钱德拉塞卡数 Q 的增加,磁场对分岔图的影响,并将其与标准(非磁性)瑞利-贝纳德问题进行比较。我们计算了钱德拉塞卡常数 Q=103 时,雷利数 0≤Ra≤105 范围内的稳定状态。这些解是通过将放缩与低钱德拉塞卡数下稳态的延续相结合而得到的,这使我们能够探索磁场强度在 Q 值增加时的影响,从磁效应几乎可以忽略的低耦合到 Q=103 时的强耦合。我们发现了大量具有丰富动态的状态,并观察到复杂的分叉结构,其中包括多个叉形分叉、霍普夫分叉和鞍节点分叉。我们的数值模拟表明,当 Q 值增大时,问题中分岔的开始时间会推迟,而流体速度模式与背景垂直磁场一致的解则具有特权。此外,我们还报告了一个在高磁耦合下趋于稳定的状态分支,这表明我们可以利用磁场来区分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信