A nonparametrically corrected likelihood for Bayesian spectral analysis of multivariate time series

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yixuan Liu , Claudia Kirch , Jeong Eun Lee , Renate Meyer
{"title":"A nonparametrically corrected likelihood for Bayesian spectral analysis of multivariate time series","authors":"Yixuan Liu ,&nbsp;Claudia Kirch ,&nbsp;Jeong Eun Lee ,&nbsp;Renate Meyer","doi":"10.1016/j.csda.2024.108010","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series is presented. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. A proof of mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series is given. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach, a generalisation of the multivariate Whittle-likelihood-based method of <span>Meier et al. (2020)</span> as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of <span>Kirch et al. (2019)</span> to the multivariate case is presented. It is demonstrated that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. Its practical advantages are illustrated by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and a multivariate time series of windspeed data at six locations in California.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"199 ","pages":"Article 108010"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016794732400094X/pdfft?md5=4194de676b76fa0193f3ea88ff4e7bdc&pid=1-s2.0-S016794732400094X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732400094X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series is presented. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. A proof of mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series is given. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach, a generalisation of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case is presented. It is demonstrated that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. Its practical advantages are illustrated by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and a multivariate time series of windspeed data at six locations in California.

多变量时间序列贝叶斯谱分析的非参数校正似然法
本文提出了一种对静态多变量时间序列进行贝叶斯非参数谱分析的新方法。从参数向量自回归模型开始,在频域对参数似然进行非参数调整,以考虑参数假设的潜在偏差。给出了非参数修正似然、多变量惠特尔似然近似和高斯时间序列精确似然的相互连续性证明。将用于单变量谱密度的非参数伯恩斯坦-德里赫特过程先验的多变量扩展到赫米特正定谱密度矩阵空间,并直接在校正矩阵上指定。然后使用该先验的无穷级数表示来开发马尔科夫链蒙特卡罗算法,以便从后验分布中采样。为了便于使用和复制,我们公开了代码。通过这种新方法,介绍了 Meier 等人(2020 年)基于惠特尔似然法的多变量方法的一般化,以及 Kirch 等人(2019 年)单变量静态时间序列非参数校正似然法在多变量情况下的扩展。研究表明,非参数校正似然结合了参数模型的效率和非参数模型的稳健性。综合模拟研究说明了其数值精确性。通过对两个环境时间序列数据集(南方涛动指数和鱼类繁殖的双变量时间序列以及加利福尼亚州六个地点风速数据的多变量时间序列)进行频谱分析,说明了该模型的实际优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信