Bayesian modal regression based on mixture distributions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qingyang Liu, Xianzheng Huang, Ray Bai
{"title":"Bayesian modal regression based on mixture distributions","authors":"Qingyang Liu,&nbsp;Xianzheng Huang,&nbsp;Ray Bai","doi":"10.1016/j.csda.2024.108012","DOIUrl":null,"url":null,"abstract":"<div><p>Compared to mean regression and quantile regression, the literature on modal regression is very sparse. A unifying framework for Bayesian modal regression is proposed, based on a family of unimodal distributions indexed by the mode, along with other parameters that allow for flexible shapes and tail behaviors. Sufficient conditions for posterior propriety under an improper prior on the mode parameter are derived. Following prior elicitation, regression analysis of simulated data and datasets from several real-life applications are conducted. Besides drawing inference for covariate effects that are easy to interpret, prediction and model selection under the proposed Bayesian modal regression framework are also considered. Evidence from these analyses suggest that the proposed inference procedures are very robust to outliers, enabling one to discover interesting covariate effects missed by mean or median regression, and to construct much tighter prediction intervals than those from mean or median regression. Computer programs for implementing the proposed Bayesian modal regression are available at <span>https://github.com/rh8liuqy/Bayesian_modal_regression</span><svg><path></path></svg>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to mean regression and quantile regression, the literature on modal regression is very sparse. A unifying framework for Bayesian modal regression is proposed, based on a family of unimodal distributions indexed by the mode, along with other parameters that allow for flexible shapes and tail behaviors. Sufficient conditions for posterior propriety under an improper prior on the mode parameter are derived. Following prior elicitation, regression analysis of simulated data and datasets from several real-life applications are conducted. Besides drawing inference for covariate effects that are easy to interpret, prediction and model selection under the proposed Bayesian modal regression framework are also considered. Evidence from these analyses suggest that the proposed inference procedures are very robust to outliers, enabling one to discover interesting covariate effects missed by mean or median regression, and to construct much tighter prediction intervals than those from mean or median regression. Computer programs for implementing the proposed Bayesian modal regression are available at https://github.com/rh8liuqy/Bayesian_modal_regression.

基于混合分布的贝叶斯模态回归
与均值回归和量值回归相比,模态回归的文献非常稀少。本文提出了贝叶斯模态回归的统一框架,该框架基于以模态为索引的单模态分布系列,以及允许灵活形状和尾部行为的其他参数。推导出了在模态参数不恰当先验条件下后验适当性的充分条件。在得出先验之后,对模拟数据和来自若干实际应用的数据集进行了回归分析。除了得出易于解释的协变量效应推论外,还考虑了在所提出的贝叶斯模态回归框架下的预测和模型选择。这些分析的证据表明,所提出的推断程序对异常值具有很强的鲁棒性,使人们能够发现平均值或中位数回归所遗漏的有趣的协变量效应,并构建比平均值或中位数回归更为严格的预测区间。实现贝叶斯模态回归的计算机程序可在 https://github.com/rh8liuqy/Bayesian_modal_regression 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信