{"title":"Convex and Lorenz orders under balance correction in nonlife insurance pricing: Review and new developments","authors":"Michel Denuit , Julien Trufin","doi":"10.1016/j.insmatheco.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>By exploiting massive amounts of data, machine learning techniques provide actuaries with predictors exhibiting high correlation with claim frequencies and severities. However, these predictors generally fail to achieve financial equilibrium and thus do not qualify as pure premiums. Autocalibration effectively addresses this issue since it ensures that every group of policyholders paying the same premium is on average self-financing. Balance correction has been proposed as a way to make any candidate premium autocalibrated with the added advantage that it improves out-of-sample Bregman divergence and hence predictive Tweedie deviance. This paper proves that balance correction is also beneficial in terms of concentration curves and derives conditions ensuring that the initial predictor and its balance-corrected version are ordered in Lorenz order. Finally, criteria are proposed to rank the balance-corrected versions of two competing predictors in the convex order.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"118 ","pages":"Pages 123-128"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000738","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
By exploiting massive amounts of data, machine learning techniques provide actuaries with predictors exhibiting high correlation with claim frequencies and severities. However, these predictors generally fail to achieve financial equilibrium and thus do not qualify as pure premiums. Autocalibration effectively addresses this issue since it ensures that every group of policyholders paying the same premium is on average self-financing. Balance correction has been proposed as a way to make any candidate premium autocalibrated with the added advantage that it improves out-of-sample Bregman divergence and hence predictive Tweedie deviance. This paper proves that balance correction is also beneficial in terms of concentration curves and derives conditions ensuring that the initial predictor and its balance-corrected version are ordered in Lorenz order. Finally, criteria are proposed to rank the balance-corrected versions of two competing predictors in the convex order.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.