Composite expectile estimation in partial functional linear regression model

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Ping Yu , Xinyuan Song , Jiang Du
{"title":"Composite expectile estimation in partial functional linear regression model","authors":"Ping Yu ,&nbsp;Xinyuan Song ,&nbsp;Jiang Du","doi":"10.1016/j.jmva.2024.105343","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research and substantive studies have shown growing interest in expectile regression (ER) procedures. Similar to quantile regression, ER with respect to different expectile levels can provide a comprehensive picture of the conditional distribution of a response variable given predictors. This study proposes three composite-type ER estimators to improve estimation accuracy. The proposed ER estimators include the composite estimator, which minimizes the composite expectile objective function across expectiles; the weighted expectile average estimator, which takes the weighted average of expectile-specific estimators; and the weighted composite estimator, which minimizes the weighted composite expectile objective function across expectiles. Under certain regularity conditions, we derive the convergence rate of the slope function, obtain the mean squared prediction error, and establish the asymptotic normality of the slope vector. Simulations are conducted to assess the empirical performances of various estimators. An application to the analysis of capital bike share data is presented. The numerical evidence endorses our theoretical results and confirm the superiority of the composite-type ER estimators to the conventional least squares and single ER estimators.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105343"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research and substantive studies have shown growing interest in expectile regression (ER) procedures. Similar to quantile regression, ER with respect to different expectile levels can provide a comprehensive picture of the conditional distribution of a response variable given predictors. This study proposes three composite-type ER estimators to improve estimation accuracy. The proposed ER estimators include the composite estimator, which minimizes the composite expectile objective function across expectiles; the weighted expectile average estimator, which takes the weighted average of expectile-specific estimators; and the weighted composite estimator, which minimizes the weighted composite expectile objective function across expectiles. Under certain regularity conditions, we derive the convergence rate of the slope function, obtain the mean squared prediction error, and establish the asymptotic normality of the slope vector. Simulations are conducted to assess the empirical performances of various estimators. An application to the analysis of capital bike share data is presented. The numerical evidence endorses our theoretical results and confirm the superiority of the composite-type ER estimators to the conventional least squares and single ER estimators.

偏函数线性回归模型中的复合期望值估计
最近的研究和实证研究表明,人们对预期回归(ER)程序越来越感兴趣。与量子回归类似,不同期望水平的 ER 可以全面反映给定预测因子的响应变量的条件分布。本研究提出了三种复合型ER估计器,以提高估计精度。所提出的ER估计器包括复合估计器,它能最小化跨期望值的复合期望值目标函数;加权期望值平均估计器,它取特定期望值估计器的加权平均值;以及加权复合估计器,它能最小化跨期望值的加权复合期望值目标函数。在一定的规则性条件下,我们推导出斜率函数的收敛率,得到均方预测误差,并建立斜率向量的渐近正态性。我们还进行了模拟,以评估各种估计器的经验性能。此外,还介绍了资本自行车份额数据分析的应用。数值证据支持了我们的理论结果,并证实了复合型ER估计器优于传统的最小二乘法和单一ER估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信