Ovinuchi Ejiohuo , Samson O. Folami , Deinmo Edi , Jessica Isaac
{"title":"Polyphenol encapsulated nanofibers in wound healing and drug delivery","authors":"Ovinuchi Ejiohuo , Samson O. Folami , Deinmo Edi , Jessica Isaac","doi":"10.1016/j.ejmcr.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><p>Polyphenol is a versatile green phytochemical vital in several biomedical applications with fascinating inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties. The emergence of novel nanotechnology techniques, such as electrospinning, has proven to be an excellent option for applications in nanotechnology, ensuring an effective drug delivery system for recognised medicinal plant extracts containing polyphenols as electrospun nanofibers can provide the necessary environment for encapsulation. Together, electrospun nanofibers and polyphenols have shown promising usage in wound healing. When polyphenols are incorporated into nanofibrous scaffolds, their combined properties enhance cell attachment, proliferation, and differentiation. This review explores the potential of polyphenol-loaded nanofibers for wound therapy, highlighting the importance of efficient drug delivery systems for electrospun polyphenols. It provides a brief assessment of specific polyphenols (resveratrol, curcumin, thymol, quercetin, tannic acid, ferulic acid, hesperidin, gallic acid, kaempferol, chlorogenic acid) that have been successfully encapsulated in electrospun nanofibers and applied in wound treatment. Despite ongoing research, certain polyphenols such as carvacrol, oleuropein, chlorogenic acid, gallic acid, and kaempferol in electrospun nanofibers remain less explored. This review underscores the need for continued investigation into these promising systems while recognising the growing application of polyphenol-loaded nanofibers in wound healing and their potential for more extensive therapeutic use.</p></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"12 ","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772417424000566/pdfft?md5=89ed9a1b2c53655bada4e15145a34552&pid=1-s2.0-S2772417424000566-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772417424000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polyphenol is a versatile green phytochemical vital in several biomedical applications with fascinating inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties. The emergence of novel nanotechnology techniques, such as electrospinning, has proven to be an excellent option for applications in nanotechnology, ensuring an effective drug delivery system for recognised medicinal plant extracts containing polyphenols as electrospun nanofibers can provide the necessary environment for encapsulation. Together, electrospun nanofibers and polyphenols have shown promising usage in wound healing. When polyphenols are incorporated into nanofibrous scaffolds, their combined properties enhance cell attachment, proliferation, and differentiation. This review explores the potential of polyphenol-loaded nanofibers for wound therapy, highlighting the importance of efficient drug delivery systems for electrospun polyphenols. It provides a brief assessment of specific polyphenols (resveratrol, curcumin, thymol, quercetin, tannic acid, ferulic acid, hesperidin, gallic acid, kaempferol, chlorogenic acid) that have been successfully encapsulated in electrospun nanofibers and applied in wound treatment. Despite ongoing research, certain polyphenols such as carvacrol, oleuropein, chlorogenic acid, gallic acid, and kaempferol in electrospun nanofibers remain less explored. This review underscores the need for continued investigation into these promising systems while recognising the growing application of polyphenol-loaded nanofibers in wound healing and their potential for more extensive therapeutic use.