{"title":"A note on differential equations of logistic type","authors":"G. Dattoli, R. Garra","doi":"10.1016/S0034-4877(24)00039-9","DOIUrl":null,"url":null,"abstract":"<div><p>Logistic equations play a pivotal role in the study of any nonlinear evolution process exhibiting growth and saturation. The interest for the phenomenology they rule goes well beyond physical processes and covers many aspects of ecology, population growth, economy. . . According to such a broad range of applications, there are different forms of functions and distributions which are recognized as generalized logistics. Sometimes they are obtained by fitting procedures. Therefore, criteria might be needed to infer the associated nonlinear differential equations, useful to guess “hidden” evolution mechanisms. In this article we analyze different forms of logistic functions and use simple means to reconstruct the differential equation they satisfy. Our study includes also differential equations containing nonstandard forms of derivative operators, like those of the Laguerre type.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"93 3","pages":"Pages 301-312"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000399","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Logistic equations play a pivotal role in the study of any nonlinear evolution process exhibiting growth and saturation. The interest for the phenomenology they rule goes well beyond physical processes and covers many aspects of ecology, population growth, economy. . . According to such a broad range of applications, there are different forms of functions and distributions which are recognized as generalized logistics. Sometimes they are obtained by fitting procedures. Therefore, criteria might be needed to infer the associated nonlinear differential equations, useful to guess “hidden” evolution mechanisms. In this article we analyze different forms of logistic functions and use simple means to reconstruct the differential equation they satisfy. Our study includes also differential equations containing nonstandard forms of derivative operators, like those of the Laguerre type.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.