{"title":"Conservation laws and nonexistence of local Hamiltonian structures for generalized Infeld—Rowlands equation","authors":"Jakub Vašíček","doi":"10.1016/S0034-4877(24)00038-7","DOIUrl":null,"url":null,"abstract":"<div><p>For a certain natural generalization of the Infeld—Rowlands equation we prove nonexistence of nontrivial local Hamiltonian structures and nontrivial local symplectic structures of any order, as well as of nontrivial local Noether and nontrivial local inverse Noether operators of any order, and exhaustively characterize all cases when the equation in question admits nontrivial local conservation laws of any order; the method of establishing the above nonexistence results can be readily applied to many other PDEs.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000387","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For a certain natural generalization of the Infeld—Rowlands equation we prove nonexistence of nontrivial local Hamiltonian structures and nontrivial local symplectic structures of any order, as well as of nontrivial local Noether and nontrivial local inverse Noether operators of any order, and exhaustively characterize all cases when the equation in question admits nontrivial local conservation laws of any order; the method of establishing the above nonexistence results can be readily applied to many other PDEs.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.