Enhanced Rashba and exchange effects in bridge-structure graphene on Ni(111) from DFT with spin-orbit coupling calculations

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Mary Clare Escaño , Tien Quang Nguyen
{"title":"Enhanced Rashba and exchange effects in bridge-structure graphene on Ni(111) from DFT with spin-orbit coupling calculations","authors":"Mary Clare Escaño ,&nbsp;Tien Quang Nguyen","doi":"10.1016/j.physe.2024.116033","DOIUrl":null,"url":null,"abstract":"<div><p>A considerably enhanced Rashba coefficient, <span><math><mrow><mi>α</mi></mrow></math></span> of up to ∼1.7 <span><math><mrow><mi>e</mi><mi>V</mi><mi>Å</mi></mrow></math></span> in single layer graphene (SLG) on Ni(111) in bridge-top (BT) configuration is obtained using density functional theory with spin-orbit coupling calculations. This is attributed to significant proximity and exchange effects in the BT configuration of SLG/Ni arising from a direct and enhanced Ni-<span><math><mrow><msub><mi>d</mi><msup><mi>z</mi><mn>2</mn></msup></msub></mrow></math></span> interaction with SLG-<span><math><mrow><mi>π</mi></mrow></math></span> states. The Rashba and exchange splitting occur in the graphene bands directly above and below the E<sub>F</sub> in the dispersion along the <span><math><mrow><mi>M</mi><mo>−</mo><mi>K</mi><mo>−</mo><msup><mi>M</mi><mo>′</mo></msup></mrow></math></span> path, that is involving the Dirac point. No Rashba splitting is noted along <span><math><mrow><mi>Γ</mi><mo>−</mo><mi>M</mi></mrow></math></span> direction in agreement with angle-resolved photoemission spectroscopy (ARPES). The above results reveal the specific conformation of SLG on ferromagnetic substrate different from the commonly studied <em>top-fcc</em> (TF) structure and paves the way for SLG for spin-orbitronics without the need for interfacing or intercalating heavy and precious metals.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"163 ","pages":"Article 116033"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001371","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A considerably enhanced Rashba coefficient, α of up to ∼1.7 eVÅ in single layer graphene (SLG) on Ni(111) in bridge-top (BT) configuration is obtained using density functional theory with spin-orbit coupling calculations. This is attributed to significant proximity and exchange effects in the BT configuration of SLG/Ni arising from a direct and enhanced Ni-dz2 interaction with SLG-π states. The Rashba and exchange splitting occur in the graphene bands directly above and below the EF in the dispersion along the MKM path, that is involving the Dirac point. No Rashba splitting is noted along ΓM direction in agreement with angle-resolved photoemission spectroscopy (ARPES). The above results reveal the specific conformation of SLG on ferromagnetic substrate different from the commonly studied top-fcc (TF) structure and paves the way for SLG for spin-orbitronics without the need for interfacing or intercalating heavy and precious metals.

Abstract Image

通过 DFT 自旋轨道耦合计算增强 Ni(111) 上桥结构石墨烯的拉什巴效应和交换效应
利用密度泛函理论和自旋轨道耦合计算,在桥顶(BT)构型的 Ni(111)上单层石墨烯(SLG)中获得了显著增强的拉什巴系数α,最高可达 ∼ 1.7 eVÅ 。这是由于在 SLG/Ni 的 BT 构型中,Ni-dz2 与 SLG-π 态的直接和增强相互作用产生了显著的邻近效应和交换效应。拉什巴分裂和交换分裂发生在石墨烯带的正上方和正下方,沿着 M-K-M′ 路径分散的 EF,即涉及狄拉克点。与角度分辨光发射光谱(ARPES)一致,沿 Γ-M 方向没有发现拉什巴分裂。上述结果揭示了 SLG 在铁磁性衬底上的特殊构象,不同于通常研究的顶-cc(TF)结构,并为 SLG 用于自旋轨道电子学铺平了道路,而不需要重金属和贵金属的界面或插层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信