Magneto-thermoelastic nonlinear dynamic modeling of a rotating functionally graded shell

IF 2.8 3区 工程技术 Q2 MECHANICS
Yuda Hu , Tao Yang
{"title":"Magneto-thermoelastic nonlinear dynamic modeling of a rotating functionally graded shell","authors":"Yuda Hu ,&nbsp;Tao Yang","doi":"10.1016/j.ijnonlinmec.2024.104818","DOIUrl":null,"url":null,"abstract":"<div><p>Research is conducted on the dynamic modeling of a rotating functionally graded (FG) cylindrical shell subjected to magnetic and temperature fields. Based on the elasticity theory and generalized Hooke's law on the physical neutral surface, nonlinear geometric equations and thermoelastic constitutive relations are determined. According to the Kirchhoff-Love theory, variational formulas of strain energies for deformation, temperature, and centrifugal force are obtained. Considering the rotational effect, the kinetic energy and its variational formula are derived. The electromagnetic force model incorporating magnetization effect of the ferromagnetic FG shell is established by utilizing the electromagnetic theory. Subsequently, the magneto-thermoelastic dynamic model of the rotating FG shell is developed by adopting the Hamilton's principle. The model can reveal the coupling mechanisms of the interaction and superposition of multi-physical fields. Finally, taking the primary resonance as example, detailed numerical analyses are performed to investigate the effects of different parameters on vibration response and dynamical stability.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224001835","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Research is conducted on the dynamic modeling of a rotating functionally graded (FG) cylindrical shell subjected to magnetic and temperature fields. Based on the elasticity theory and generalized Hooke's law on the physical neutral surface, nonlinear geometric equations and thermoelastic constitutive relations are determined. According to the Kirchhoff-Love theory, variational formulas of strain energies for deformation, temperature, and centrifugal force are obtained. Considering the rotational effect, the kinetic energy and its variational formula are derived. The electromagnetic force model incorporating magnetization effect of the ferromagnetic FG shell is established by utilizing the electromagnetic theory. Subsequently, the magneto-thermoelastic dynamic model of the rotating FG shell is developed by adopting the Hamilton's principle. The model can reveal the coupling mechanisms of the interaction and superposition of multi-physical fields. Finally, taking the primary resonance as example, detailed numerical analyses are performed to investigate the effects of different parameters on vibration response and dynamical stability.

旋转功能分级壳体的磁热弹非线性动力学建模
研究对象是受磁场和温度场作用的旋转功能分级(FG)圆柱形壳体的动态模型。根据弹性理论和物理中性面上的广义胡克定律,确定了非线性几何方程和热弹性构成关系。根据基尔霍夫-洛夫理论,得到了变形、温度和离心力的应变能变式。考虑到旋转效应,得出了动能及其变分公式。利用电磁理论建立了包含铁磁性 FG 外壳磁化效应的电磁力模型。随后,利用汉密尔顿原理建立了旋转 FG 外壳的磁热弹性动力学模型。该模型可以揭示多物理场相互作用和叠加的耦合机制。最后,以主共振为例,进行了详细的数值分析,研究了不同参数对振动响应和动力学稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信