{"title":"Stability assessment of jointed rock capturing roughness degradation under cyclic loading with special reference to railway formation","authors":"Majid Jazebi , Buddhima Indraratna , Rakesh Sai Malisetty , Cholachat Rujikiatkamjorn","doi":"10.1016/j.trgeo.2024.101310","DOIUrl":null,"url":null,"abstract":"<div><p>Repeated train loading on a jointed rock subgrade can cause excessive displacements of certain discontinuities leading to instability. Repeated shearing of discontinuities leads to a gradual reduction in joint roughness (i.e. wearing of asperities), which is quantified by the change in the joint roughness coefficient (JRC). This process reduces the joint shear strength over time. In this study, the classical shear strength criterion proposed by Barton and Choubey (1977) is extended to capture the influence of cyclic loading on joint degradation and the corresponding shear strength reduction, also considering the scale effect. This modified cyclic shear strength is implemented in FLAC-3D and validated with conventional cyclic triaxial data available from selected past studies. The model is applied to a simulated real-life track operating over a jointed sandstone formation commonly found towards the eastern coast of NSW. A modified limit equilibrium approach based on an Equivalent Factor of Safety (EFOS) is introduced and adopted to quantify the extent of instability, whereby an increase in the number of loading cycles affects a decrease in the EFOS of an unstable block. For a specific joint strike inclined to the track, the potential adversities are exacerbated when the joint dip angle is greater and when the initial JRC is smaller. In this paper, alternative geometrical combinations and different initial joint properties are considered to determine the worst combination of JRC and joint orientation upon cyclic train loading. As most past studies adhere to traditional static load analyses, the extended shear strength criterion described in this study is novel, and it offers significant practical benefit for railways that are subjected to prolonged cyclic loading.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001314","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Repeated train loading on a jointed rock subgrade can cause excessive displacements of certain discontinuities leading to instability. Repeated shearing of discontinuities leads to a gradual reduction in joint roughness (i.e. wearing of asperities), which is quantified by the change in the joint roughness coefficient (JRC). This process reduces the joint shear strength over time. In this study, the classical shear strength criterion proposed by Barton and Choubey (1977) is extended to capture the influence of cyclic loading on joint degradation and the corresponding shear strength reduction, also considering the scale effect. This modified cyclic shear strength is implemented in FLAC-3D and validated with conventional cyclic triaxial data available from selected past studies. The model is applied to a simulated real-life track operating over a jointed sandstone formation commonly found towards the eastern coast of NSW. A modified limit equilibrium approach based on an Equivalent Factor of Safety (EFOS) is introduced and adopted to quantify the extent of instability, whereby an increase in the number of loading cycles affects a decrease in the EFOS of an unstable block. For a specific joint strike inclined to the track, the potential adversities are exacerbated when the joint dip angle is greater and when the initial JRC is smaller. In this paper, alternative geometrical combinations and different initial joint properties are considered to determine the worst combination of JRC and joint orientation upon cyclic train loading. As most past studies adhere to traditional static load analyses, the extended shear strength criterion described in this study is novel, and it offers significant practical benefit for railways that are subjected to prolonged cyclic loading.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.