SymNOM-GED: Symmetric neighbor outlier mining in gene expression datasets

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bikash Baruah , Manash P. Dutta , Subhasish Banerjee , Dhruba K. Bhattacharyya
{"title":"SymNOM-GED: Symmetric neighbor outlier mining in gene expression datasets","authors":"Bikash Baruah ,&nbsp;Manash P. Dutta ,&nbsp;Subhasish Banerjee ,&nbsp;Dhruba K. Bhattacharyya","doi":"10.1016/j.jocs.2024.102365","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces \"SymNOM-GED,\" an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell Carcinoma (ESCC). SymNOM-GED leverages symmetric neighbor to effectively identify outliers by considering local and global gene expression patterns. Extensive experiments demonstrate that SymNOM-GED outperforms existing algorithms in terms of accuracy, robustness, and scalability. The algorithm's performance is validated using clustering coefficient, graph density, and modularity, confirming its superiority. SymNOM-GED's precise and reliable outlier detection capabilities contribute significantly to bioinformatics research, offering insights into gene expression patterns in diverse biological contexts.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"81 ","pages":"Article 102365"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001583","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces "SymNOM-GED," an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell Carcinoma (ESCC). SymNOM-GED leverages symmetric neighbor to effectively identify outliers by considering local and global gene expression patterns. Extensive experiments demonstrate that SymNOM-GED outperforms existing algorithms in terms of accuracy, robustness, and scalability. The algorithm's performance is validated using clustering coefficient, graph density, and modularity, confirming its superiority. SymNOM-GED's precise and reliable outlier detection capabilities contribute significantly to bioinformatics research, offering insights into gene expression patterns in diverse biological contexts.

SymNOM-GED:基因表达数据集中的对称邻域异常值挖掘
准确检测基因表达数据集中的异常值对揭示错综复杂的生物过程起着至关重要的作用。本研究介绍了 "SymNOM-GED",这是一种在基因表达数据集中挖掘异常值的创新算法,重点关注食管鳞状细胞癌(ESCC)。SymNOM-GED 利用对称邻接法,通过考虑局部和全局基因表达模式,有效地识别异常值。大量实验证明,SymNOM-GED 在准确性、鲁棒性和可扩展性方面都优于现有算法。该算法的性能通过聚类系数、图密度和模块性得到了验证,证实了其优越性。SymNOM-GED 精确可靠的离群点检测能力为生物信息学研究做出了重大贡献,为深入了解不同生物背景下的基因表达模式提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信