Bikash Baruah , Manash P. Dutta , Subhasish Banerjee , Dhruba K. Bhattacharyya
{"title":"SymNOM-GED: Symmetric neighbor outlier mining in gene expression datasets","authors":"Bikash Baruah , Manash P. Dutta , Subhasish Banerjee , Dhruba K. Bhattacharyya","doi":"10.1016/j.jocs.2024.102365","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces \"SymNOM-GED,\" an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell Carcinoma (ESCC). SymNOM-GED leverages symmetric neighbor to effectively identify outliers by considering local and global gene expression patterns. Extensive experiments demonstrate that SymNOM-GED outperforms existing algorithms in terms of accuracy, robustness, and scalability. The algorithm's performance is validated using clustering coefficient, graph density, and modularity, confirming its superiority. SymNOM-GED's precise and reliable outlier detection capabilities contribute significantly to bioinformatics research, offering insights into gene expression patterns in diverse biological contexts.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"81 ","pages":"Article 102365"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001583","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces "SymNOM-GED," an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell Carcinoma (ESCC). SymNOM-GED leverages symmetric neighbor to effectively identify outliers by considering local and global gene expression patterns. Extensive experiments demonstrate that SymNOM-GED outperforms existing algorithms in terms of accuracy, robustness, and scalability. The algorithm's performance is validated using clustering coefficient, graph density, and modularity, confirming its superiority. SymNOM-GED's precise and reliable outlier detection capabilities contribute significantly to bioinformatics research, offering insights into gene expression patterns in diverse biological contexts.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).