{"title":"Deep attention network for identifying ligand-protein binding sites","authors":"Fatemeh Nazem , Reza Rasti , Afshin Fassihi , Alireza Mehri Dehnavi , Fahimeh Ghasemi","doi":"10.1016/j.jocs.2024.102368","DOIUrl":null,"url":null,"abstract":"<div><p>One of the critical aspects of structure-based drug design is to choose important druggable binding sites in the protein's crystallography structures. As experimental processes are costly and time-consuming, computational drug design using machine learning algorithms is recommended. Over recent years, deep learning methods have been utilized in a wide variety of research applications such as binding site prediction. In this study, a new combination of attention blocks in the 3D U-Net model based on semantic segmentation methods is used to improve localization of pocket prediction. The attention blocks are tuned to find which point and channel of features should be emphasized along spatial and channel axes. Our model's performance is evaluated through extensive experiments on several datasets from different sources, and the results are compared to the most recent deep learning-based models. The results indicate the proposed attention model (Att-UNet) can predict binding sites accurately, i.e. the overlap of the predicted pocket using the proposed method with the true binding site shows statistically significant improvement when compared to other state-of-the-art models. The attention blocks may help the model focus on the target structure by suppressing features in irrelevant regions.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"81 ","pages":"Article 102368"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001613","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the critical aspects of structure-based drug design is to choose important druggable binding sites in the protein's crystallography structures. As experimental processes are costly and time-consuming, computational drug design using machine learning algorithms is recommended. Over recent years, deep learning methods have been utilized in a wide variety of research applications such as binding site prediction. In this study, a new combination of attention blocks in the 3D U-Net model based on semantic segmentation methods is used to improve localization of pocket prediction. The attention blocks are tuned to find which point and channel of features should be emphasized along spatial and channel axes. Our model's performance is evaluated through extensive experiments on several datasets from different sources, and the results are compared to the most recent deep learning-based models. The results indicate the proposed attention model (Att-UNet) can predict binding sites accurately, i.e. the overlap of the predicted pocket using the proposed method with the true binding site shows statistically significant improvement when compared to other state-of-the-art models. The attention blocks may help the model focus on the target structure by suppressing features in irrelevant regions.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).