Approximation for the invariant measure with applications for jump processes (convergence in total variation distance)

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Vlad Bally, Yifeng Qin
{"title":"Approximation for the invariant measure with applications for jump processes (convergence in total variation distance)","authors":"Vlad Bally,&nbsp;Yifeng Qin","doi":"10.1016/j.spa.2024.104416","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish an abstract framework for the approximation of the invariant probability measure for a Markov semigroup. Following Pagès and Panloup (2022) we use an Euler scheme with decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate and some regularization properties, we give an estimate of the error in total variation distance. This abstract framework covers the main results in Pagès and Panloup (2022) and Chen et al. (2023). As a specific application we study the convergence in total variation distance to the invariant measure for jump type equations. The main technical difficulty consists in proving the regularization properties — this is done under an ellipticity condition, using Malliavin calculus for jump processes.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"176 ","pages":"Article 104416"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001224","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish an abstract framework for the approximation of the invariant probability measure for a Markov semigroup. Following Pagès and Panloup (2022) we use an Euler scheme with decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate and some regularization properties, we give an estimate of the error in total variation distance. This abstract framework covers the main results in Pagès and Panloup (2022) and Chen et al. (2023). As a specific application we study the convergence in total variation distance to the invariant measure for jump type equations. The main technical difficulty consists in proving the regularization properties — this is done under an ellipticity condition, using Malliavin calculus for jump processes.

不变度量的近似值及其在跳跃过程中的应用(总变异距离的收敛性)
本文建立了马尔可夫半群不变概率度量近似的抽象框架。按照 Pagès 和 Panloup (2022),我们使用步长递减的欧拉方案(未调整的朗格文算法)。在一些指数速率收缩特性和一些正则化特性下,我们给出了总变化距离误差的估计值。这一抽象框架涵盖了 Pagès 和 Panloup (2022) 以及 Chen 等人 (2023) 的主要结果。作为具体应用,我们研究了总变异距离对跳跃式方程不变度量的收敛性。主要的技术难点在于证明正则化特性--这是在椭圆性条件下,利用跃迁过程的马利亚文微积分完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信