A zero-estimator approach for estimating the signal level in a high-dimensional model-free setting

Pub Date : 2024-06-22 DOI:10.1016/j.jspi.2024.106207
Ilan Livne, David Azriel, Yair Goldberg
{"title":"A zero-estimator approach for estimating the signal level in a high-dimensional model-free setting","authors":"Ilan Livne,&nbsp;David Azriel,&nbsp;Yair Goldberg","doi":"10.1016/j.jspi.2024.106207","DOIUrl":null,"url":null,"abstract":"<div><p>We study a high-dimensional regression setting under the assumption of known covariate distribution. We aim at estimating the amount of explained variation in the response by the best linear function of the covariates (the signal level). In our setting, neither sparsity of the coefficient vector, nor normality of the covariates or linearity of the conditional expectation are assumed. We present an unbiased and consistent estimator and then improve it by using a zero-estimator approach, where a zero-estimator is a statistic whose expected value is zero. More generally, we present an algorithm based on the zero estimator approach that in principle can improve any given estimator. We study some asymptotic properties of the proposed estimators and demonstrate their finite sample performance in a simulation study.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a high-dimensional regression setting under the assumption of known covariate distribution. We aim at estimating the amount of explained variation in the response by the best linear function of the covariates (the signal level). In our setting, neither sparsity of the coefficient vector, nor normality of the covariates or linearity of the conditional expectation are assumed. We present an unbiased and consistent estimator and then improve it by using a zero-estimator approach, where a zero-estimator is a statistic whose expected value is zero. More generally, we present an algorithm based on the zero estimator approach that in principle can improve any given estimator. We study some asymptotic properties of the proposed estimators and demonstrate their finite sample performance in a simulation study.

分享
查看原文
在高维无模型环境中估计信号水平的零估计器方法
我们研究的是已知协变量分布假设下的高维回归设置。我们的目标是通过协变量(信号水平)的最佳线性函数来估计响应中可解释的变化量。在我们的设置中,既不假设系数向量的稀疏性,也不假设协变量的正态性或条件期望的线性。我们提出了一个无偏且一致的估计器,然后通过使用零估计器方法对其进行改进,零估计器是一种期望值为零的统计量。更广泛地说,我们提出了一种基于零估计方法的算法,该算法原则上可以改进任何给定的估计值。我们研究了所提估计器的一些渐近特性,并在模拟研究中展示了它们的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信